國立臺灣大學107學年度碩士班招生考試試題

科目:微積分(A)

節次: 4

題號: 57

共 1 頁之第 1 頁

Write down your answers in order. You should provide all the necessary calculus and reasoning.

1. (10%) Find the horizontal and vertical asymptotes of y = f(x), where

$$f(x) = \frac{\sqrt{x^4 + x^3 + 1} - \sqrt{x^4 - x^3 + 1}}{|x|} + \frac{\ln|x + 1|}{x}$$

- 2. (a) (4%) Show that $f(x) = 1 + x + \int_{-x}^{x} e^{-t^2} dt$ is one-to-one.
 - (b) (6%) Let $g(x) = f^{-1}(x)$. Find g(1), g'(1), and g''(1).
- 3. (10%) Consider $\sum_{i=1}^{1000} \sqrt[3]{i}$ and $\sum_{i=1}^{999} \sqrt[3]{i}$. Use an integral to give $\sum_{i=1}^{1000} \sqrt[3]{i}$ an upper bound and a lower bound.
- 4. Evaluate the integral or show that it diverges.
 - (a) $(6\%) \int_1^\infty \frac{\arctan(x)}{x^2} dx$.
 - (b) (6%) $\int_0^1 \frac{1}{x\sqrt{1+(\ln x)^2}} dx$.
- 5. Consider the flow of blood through a blood vessel with cross-section $D = \{(x,y)|x^2+y^2 \le R^2\}$, a small disc with radius R > 0. Suppose that the velocity of the blood, v, through each point of the cross-section is $v(x,y) = c P(R^2 x^2 y^2)$, where c is a constant and P is the pressure difference between the ends of the vessel. We define the flux of the blood, F, as $F = \iint_D v(x,y) dA$.
 - (a) (4%) Derive the formula of F in terms of R and P.
 - (b) (8%)Assume that the flux of the blood is constant, and the pressure $P = 4000 \ dynes/cm^2$ when $R = 0.008 \ cm$. Now the radius of the cross-section decreases at a constant rate $dR/dt = -0.0002 \ cm/year$. Find the rate of increase of P when $R = 0.006 \ cm$.
- 6. Consider the ellipse $x^2 + xy + y^2 = 3$.
 - (a) (6%) Find the points on which the ellipse obtains the maximum and the minimum y coordinate.
 - (b) (6%) Find the equations of the two tangent lines to the ellipse that pass through the point (4, -2).
- 7. (10%) Use Taylor series to approximate $\int_0^1 \cos(x^5) dx$ with error smaller than 10^{-4} .
- 8. Let

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

- (a) (4%) Compute the directional derivative $D_{\vec{u}}f(0,0)$, where $\vec{u} = (\cos \theta, \sin \theta)$. Is (0,0) a critical point of f?
- (b) (8%) Find the maximum and minimum values of f on the unit disc $D = \{(x, y) | x^2 + y^2 \le 1\}$.
- 9. (12%) Evaluate the integral $\iiint_E ze^{x^2+y^2}dV$, where E is the portion of the unit ball $x^2+y^2+z^2\leq 1$ that lies in the first octant and above the cone $z=\sqrt{x^2+y^2}$.