國立臺灣大學 107 學年度碩士班招生考試試題 題號: 356

科目:線性代數(C)

節次: 1

356 百之第 頁

※ 注意:請於試卷內之「非選擇題作答區」依序作答,並應註明作答之大題及小題題號。

1. Consider the following matrix: (20%)

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ a & b & c \end{bmatrix}$$

- (a) Give a general condition on the numbers a, b, and c such that the matrix A is singular.
- (b) With your previous condition on a, b, and c, write the matrix A as LU where L and U are some lower and upper triangular matrices.
- (c) With the same previous condition on a, b, and c, find basis vectors for column space, row space, and null space of A.
- 2. Let A be the following matrix: (20%)

$$A = \begin{bmatrix} 3 & 1 & 1 \\ 2 & 4 & 2 \\ -1 & -1 & 1 \end{bmatrix}$$

Give an explicit and simplified formula for  $A^n$  for any positive integer n.

3. (20%)

(a) Find all solutions to the following system of differential equations:

$$y_1' = -5y_1 + 3y_2$$
  
$$y_2' = -4y_1 + 2y_2$$

(b) Use your computations from part (a) to find all solutions to the following system of differential equations:

$$y_1'' = -5y_1 + 3y_2$$
$$y_2'' = -4y_1 + 2y_2$$

4. Compute the inverse of the matrix (20%)

and columns.

$$\begin{bmatrix}
0 & 1 & 2 & 3 \\
1 & 1 & 2 & 3 \\
2 & 2 & 2 & 3 \\
3 & 3 & 3 & 3
\end{bmatrix}$$

- (a) By partitioning the matrix into four 2x2 submatrices.
- (b) By starting with the submatrix  $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$  and computing the inverse by successively adding rows
- 5. Find polynomial solutions of the equation: (20%) xy''+(1-x)y'+ny=0 with n a positive integer. Show that these solutions are orthogonal with respect to the weighting function  $\exp(-x)$  over the interval  $(0,\infty)$ .