類號: 269

國立臺灣大學 106 學年度碩士班招生考試試題

科目: 材料力學(E)

節次: 8

題號: 269 共 1 頁之第 1 頁

1. (25%) A cantilever beam AB is subjected to a uniform load of intensity q, as shown in the Figure. Please determine

- (a) The general expression of the bending moment as a function of x (5%)
- (b) The equation of the deflection curve as a function of x (10%)
- (c) The angle of rotation θ_b at the free end of the beam (5%)
- (d) The deflection δ_0 at the free end of the beam (5%)

(Note: use following symbols in the expressions you derive. E: modulus of elasticity (Young's modulus); I: moment of inertia of the cross-sectional area)

2. (25%) A solid circular bar with fixed ends is acted upon by two oppositely directed torques T_0 , as shown in the Figure.

Please obtain the formulas for

- (a) Reactive torque T_a (5%)
- (b) Reactive torque T_d (5%)
- (c) The angle of twist ϕ_b at section B (5%)
- (d) The angle of twist ϕ_m at the midsection of the bar (10%)

(Note: use following symbols in the expressions you derive. G: shear modulus of elasticity; Ip: polar moment of inertia)

3. (25%) Consider a L-shaped lever as shown in the figure, a force $F=312.5\pi N$ is applied to end A in parallel with z-axis.

Please determine and make drawings of the following questions:

- (a) An equivalent force-couple system at the center point B of the transverse section passing through point C (6%)
- (b) The normal stress σ_x , σ_y , and shear stress τ_{xy} at point C (8%)
- (c) The principal stresses and principal planes at point C (11%)

4. (25%) Consider a metal pipe of length L=1.2 m with an outside diameter $d_2=5$ cm and inner diameter $d_1=3$ cm. One side of this pipe is fixed on the floor. The top side of this pipe has a compressive force $F=4\pi \times 10^4$ N applied on its surface. The elasticity and poisson's ratio of this metal is E=200 GPa and v=0.3, respectively.

Determine the following quantities for this pipe:

- (1) The axial normal stress σ_v , strain ε_v and the shorting δ (9%)
- (2) the lateral strain ε_x (3%)
- (3) The change of outer diameter Δd_2 and inner Δd_1 (6%)
- (4) the increase in wall thickness Δt (3%)
- (5) the dilation e (4%)

