題號: 228 國立臺灣大學106學年度碩士班招生考試試題

科目:工程數學(B)

(12%)

題號:228

節次: 6

共 2 頁之第 1

1. Given that the Gamma function has the following properties:

$$\Gamma(\alpha)\Gamma(1-\alpha) = \frac{\pi}{\sin \alpha\pi}$$
, $0 < \alpha < 1$, and $\Gamma(n+\frac{1}{3}) = \Gamma(\frac{1}{3})\frac{(3n-2)!}{3^n}$

Solve the integral equation $3\int_0^t \frac{x(\tau)}{\sqrt[3]{t-\tau}} d\tau = 2t$ and express its solution in terms of π and t. (10%)

- 2. Solve the differential equation $\frac{d^2y}{dx^2} = \sec^2 y \tan y$, with the initial conditions y(-1) = 0 and y'(-1) = 1. (15%)
- 3. Solve the following nonhomogeneous system of linear differential equations:

$$\frac{dx}{dt} = -3x + y + 3t$$

$$\frac{dy}{dt} = 2x - 4y + e^{-t}$$
(15%)

4. Solve the partial differential equation $\frac{\partial u}{\partial t} = k^2 \frac{\partial^2 u}{\partial x^2} + F(x)$ for $0 \le x \le L$ with F(x)=x(x-L), boundary conditions u(0,t)=u(L,t)=0 and the initial condition u(x,0)=x. Solution is sought in the form of $u(x,t)=\sum_{n=1}^{\infty}T_n(t)\phi_n(x)$ where $\phi_n(x)$ is the eigenfunction of the problem according to the Sturm-Liouville theorem: Find $\phi_n(x)$ and the eigenfunction expansion of F(x) and the initial condition

Find an equation for $T_n(t)$ and solve for the final u(x,t). (6%)

- 5. Show that the Fourier transformation of $e^{-\alpha t^2}$ is $\sqrt{\frac{\pi}{\alpha}}e^{-\frac{\omega^2}{4\alpha}}$ with constant α .
 - (4%) Solve $\frac{\partial u}{\partial t} = k^2 \frac{\partial^2 u}{\partial x^2}$ for $-\infty < x < \infty$ subjected to $u(x,0)=x^2$

題號: 228

國立臺灣大學106學年度碩士班招生考試試題

科目:工程數學(B)

題號:228

節次: 6

共 2 頁之第 2 頁

(8%)

- 6. The velocity field of a fluid is given by $\mathbf{F}(x,y,z) = y\mathbf{i} x\mathbf{j} + 4\mathbf{k}$. The surface S is that part of the sphere $x^2 + y^2 + z^2 = 9$ that is above the region D in the xy plane enclosed by the circle $x^2 + y^2 = 4$ (15%)
- (a) Determine the unit outward normal vector of the surface S.
- (b) Determine the area of the surface S.
- (c) Determine the flux of F across S.
- 7. Let $F(z) = \frac{1}{(z^2-4)(z-3)^2}$, where z is a complex variable.

(15%)

- (a) Identify poles and the order of poles of F(z).
- (b) Determine the residue of each pole.
- (c) Determine the inverse Laplace transform of F(z). Please draw the integral contour for calculating the inverse Laplace transform.

試題隨恭繳回