題號: 428

國立臺灣大學 102 學年度碩士班招生考試試題

科目:應用電子學

馬用電子學

節次: 7

題號: 428 共 / 頁之第 / 頁

1. (a) Sketch $V_{out}(t)$ of the circuit shown in Fig. 1 given a sinusoidal $V_{in}(t) = 5 \sin(2\pi t/T)$ V, over t = 0 - 2T where T is the period of $V_{in}(t)$. Assume $V_{in} = 0$ when t < 0, the offset voltage of the diode is 0.6 V, and R_L is large enough to be considered infinite. (5%) (b) What is the effect of a finite R_L to $V_{out}(t)$? Sketch two curves of $V_{out}(t)$, one with a larger R_L and the other with a smaller R_L to demonstrate the effect of R_L . (10%)

- 2. Fig. 2 shows a differential amplifier. (a) Derive an expression for the differential gain $A_d = V_{out}/(V_2-V_1)$, assuming $R_3 = R_1$ and $R_4 = R_2$. (.5 %)
- (b) What is the input impedance of the differential amplifier to a common-mode signal (e.g. interference caused by 60 Hz power lines)? Again, assume $R_3 = R_1$ and $R_4 = R_2$. (10%)
- (c) Next, consider mismatched resistors R2 = 100 k Ω , R4 = 101 k Ω , and matched resistors R1 = R3 = 1 k Ω . Following the definition of common-mode signal, $V_{cm} = (V_2 + V_1)/2$, and definition of differential-mode signal, $V_d = V_2 V_1$, find the common-mode rejection ratio (CMRR) in decibels. Hint: derive expressions for differential-mode gain A_d and common-mode gain A_{cm} such that $V_{out} = A_{cm}V_{cm} + A_dV_d$, and CMRR = A_d/A_{cm} . (10%)
- 3. Fig. 3 shows an instrumentation amplifier for highly sensitive AC signal detection. (a) Derive an expression for the differential-mode gain $A_d = V_{out}/(V_2-V_1)$, assuming $R_3 = R_1$ and $R_4 = R_2$. (10%)
- (b) Assume $R_{gain} = R_1 = R_2 = R_3 = 1 \text{ k}\Omega$, $R_4 = 1.01 \text{ k}\Omega$, and $R = 49.5 \text{ k}\Omega$, find the CMRR in decibels. You may use the results of Question 2(c) to simplify the problem. (10%)
- (c) Describe the advantages of the instrumentation amplifier (Fig. 3) compared with the differential amplifier (Fig. 2), in terms of input impedance and CMRR. (10%)
- 4. (a) Derive an expr<mark>essi</mark>on for the frequency response (as a function of angular frequency ω) of the filter shown in Fig. 4. (10%) (b) Find out the cut off frequency. (10%) (c) What is the physical meaning of the phase of the frequency response? (10%)

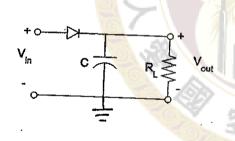
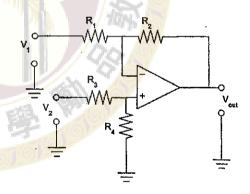
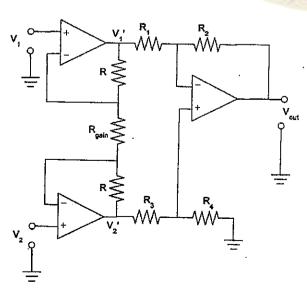




Fig. 1

 V_{in} V_{in} V

Fig. 2

Fig. 4

Fig. 3

試題隨米幾回