題號: 69

國立臺灣大學101學年度碩士班招生考試試題

科目:普通化學

節次: 8

題號: 69 共] 頁之第 / 頁

H 1.00794											v					H 1.00794	He 4.002602
3 Li 6.941	Be 9.012182		(3)									B 10.811	Č	7 N 14.00674	O 15.9994	9 F 18.9984032	Ne Ne 20,1797
Na 22.989770	Mg 24.3050											Al 26.981538	14 Si 28.0855	P 30.973761	16 S 32.066	Cl 35.4527	18 Ar 39,948
19 K 39.0983	Ca 40.078	21 Sc 44.955910	Ti 47.867	V 50.9415	Cr 51,9961	25 Mn 54.938049	Fe 55.845	CO 58.933200	Ni 58.6934	Cu 63.546	Zn 65.39	Ga 69.723	Ge 72.61	33 As 74.92160	34 Se 78.96	Br 79,904	Kr 83.80
37 Rb 85.4678	38 Sr 87,62	39 Y 88.90585	Zr 91.224	Nb 92.90638	Mo 95.94	Tc (98)	Ru 101.07	Rh 102.90550	Pd 106.42	47 Ag 107.8682	Cd 112.411	In 114.818	50 Sn 118,710	51 Sb 121.760	Te 127.60	53 I 126.90447	Xe 131.29
55 CS 132.90545	56 Ba 137.327	57 La 138.9055	Hf 178,49	73 Ta 180.9479	74 W 183,84	75 Re 186,207	76 Os 190.23	77 Ir 192.217	78 Pt 195,078	79 Au 196,96655	80 Hg 200.59	81 T1 204.3833	Pb 207.2	83 Bi 208.98038	Po (209)	85 At (210)	86 Rn (222)
Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	Db (262)	106 Sg (263)	Bh (262)	108 Hs (265)	109 Mt (266)	(269)	111 (272)	(277)		114 (289) (287)		116 (289)		(293)

本試題含單選題 30 題(75 分),及二題敘述與計算題(25 分),總分 100 分

(I). 單選題(選出一個最適當的答案): 每題 2.5 分. (答案直接填入"選擇題作答區"內)

- 1. Which one is an ionic compound?
 - (A) B₂H₆ (B) NF₃ (C) Sc₂O₃ (D) HF (E) None of the above
- 2. Chloric acid is
 - (A) HClO (B) HClO₂ (C) HClO₃ (D) HClO₄ (E) None of the above
- 3. The Haber process is the industrial process that produces
 - (A) Sugar (B) Hydrogen cyanide (C) Ammonium acetate (D) Ammonia (E) None of the above
- Which of the following solutions has the largest concentration of solvated protons?
 (A) 0.2 M LiOH (B) 0.2 M HI (C) 1.0 M methyl alcohol (D) 0.2 M HCl (E) Pure water
- 5. Which one of the following compounds is a strong base?
 - (A) HClO₃ (B) Sr(OH)₂ (C) Cd(OH)₂ (D) Sn(OH)₂ (E) None of the above
- 6. Using modern analytical techniques, it is possible to detect sodium ions in concentrations as low as 50 pg/mL. What is this detection limit expressed in molarity of Na⁺?
 - (A) $2.2 \times 10^{-3} M$ (B) $2.2 \times 10^{-6} M$ (C) $2.2 \times 10^{-9} M$ (D) $2.2 \times 10^{-12} M$ (E) None of the above
- 7. Consider proper number of significant figures, 43.123×0.00277 should be expressed as
 - (A) 0.11945 (B) 0.1195 (C) 0.119 (D) 0.12 (E) None of the above
- 8. A solid sample of Zn(OH)₂ is added to 0.350L of 0.500 M aqueous HBr. The solution that remains is then titrated with 0.500 M NaOH solution, and it takes 88.5 mL of the NaOH solution to reach the equivalence point. What mass of Zn(OH)₂ was added to the HBr solution?

 (A) 6.5 g (B) 10.5 g (C) 13.0 g (D) 25.0 g (E) None of the above
- 9. Which one of the following statements is incorrect?
 - (A) Heat is a form of energy (B) In a spontaneous process, the entropy of the system must increase (C) Heat transfer is always from a hotter object to a colder one (D) Work is the energy expended to move an object against a force (E) None of the above
- 10. Which one of the following is not a thermodynamic state function?
 - (A) Internal energy (B) Entropy (C) Volume (D) Free energy (E) Work
- 11. You are given ΔH for a process that occurs at a known constant pressure. What additional information do you need to determine ΔE for the process?
 - (A) ΔV (B) ΔT (C) ΔS (D) ΔG (E) None of the above
- 12. What is the degeneracy of the n=4 energy level of the hydrogen atom?
 - (A) 1 (B) 4 (C) 9 (D) 16 (E) 32
- 13. What is the maximum number of electrons in an atom that can have quantum numbers n=5, l=3? (A) 5 (B) 7 (C) 10 (D) 14 (E) None of the above
- 14. Which one of the following atoms has the highest first ionization energy?
 - (A) Be (B) B (C) C (D) N (E) O
- 15. Which one has the largest lattice energy?
 - (A) NaCl (B) BaO (C) SrO (D) SrCl₂ (E) SrF₂

題號: 69

國立臺灣大學101學年度碩士班招生考試試題

科目:普通化學 節次: 8

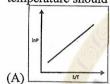
題號: 69 共 3 頁之第 2 頁

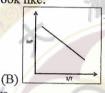
16. The molecular geometry of BrF5 is

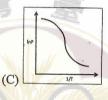
(A) Trigonal pyramidal (B) Tetrahedral (C) Trigonal bipyramidal (D) Square pyramidal

(E) Octahedral

17. Which one has the largest molecular dipole moment? (A) BH₃ (B) CH₄ (C) NH₃ (D) H₂O (E) HF

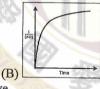

18. Which gas is most dense at 1.00 atm and 298K?

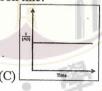

(A) CO₂ (B) N₂O (C) Cl₂ (D) O₂ (E) NO₂


19. The reaction of calcium carbide with water produces a colorless gas. The gas is (A) CO₂ (B) H₂ (C) NO₂ (D) C₂H₂ (E) C₂H₄

20. Which one of the following descriptions about supercritical fluid is incorrect?
(A) Supercritical fluid of CO₂ is used for extraction in industrial scale (B) The superfluid forms when the temperature exceeds the critical temperature and the pressure exceeds the critical pressure (C) When decompress a supercritical fluid at constant temperature, gas phase forms (D) When reduce the temperature of a supercritical fluid at constant pressure, liquid phase forms (E) None of the above

21. For a molecular substance, the plot of the natural logarithm of vapor pressure versus inverse temperature should look like:


(E) None of the above


- 22. The Henry's law constant for helium gas in water at 30 °C is 3.7×10⁻⁴ M/atm. If helium is present at 1.5 atm pressure, what is its solubility in water at 30 °C?
 - (A) $1.8 \times 10^{-3} M$ (B) $1.8 \times 10^{-4} M$ (C) $5.6 \times 10^{-3} M$ (D) $5.6 \times 10^{-4} M$ (E) None of the above

23. A catalyst can not change

- (A) Reaction mechanism (B) Activation energy (C) Enthalpy change of reaction (D) Entropy of the activation complex (E) None of the above
- 24. The reaction $2NO_{(g)} + Cl_{2(g)} \rightarrow 2NOCl_{(g)}$ is determined to be second order in NO and first order in Cl₂. The graph of 1/[NO] versus time should look like:

(E) None of the above

25. A 0.832-g sample of gaseous SO_3 is placed in a 1.00-L container and heated to 1100 K. The SO_3 gas decomposes to SO_2 and O_2 . At equilibrium, the total pressure in the container is 1.300 atm. The value of K_p for this reaction at 1100 K is approximately:

(A) 0.23 (B) 2.3 (C) 4.3 (D) 6.3 (E) None of the above

26. Lactic acid (CH₃CH(OH)COOH) has one acidic hydrogen. A 0.10 M solution of lactic acid has a pH of 2.44. The K_a of lactic acid is approximately

(A) 7.1×10^{-3} (B) 7.1×10^{-4} (C) 1.4×10^{-3} (D) 1.4×10^{-4} (E) None of the above

27. The formula of 4-ethyl-2,4-dimethylhexane is

(A) C₈H₁₈ (B) C₉H₂₀ (C) C₁₀H₂₂ (D) C₁₁H₂₄ (E) None of the above

28. Which one of the following is a primary amine?

(A) Dimethyl amine (B) Trimethyl amine (C) Acetamide (D) Aniline (E) None of the above

29. A cell has a standard cell potential of +0.177 V at 298 K. If the value of the equilibrium constant for the redox reaction is K=9.8×10², then what is the number of electrons transferred in the redox reaction?

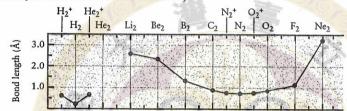
(A) n=1 (B) n=2 (C) n=3 (D) n=4

30. Uranium-235 undergoes fission when struck by a slow-moving neutron. The primary produces of this process is $^{91}_{36}$ Kr and $^{142}_{56}$ Ba . How many neutrons are generated with the fission of one Uranium-235 atom?

(A) 1 (B) 2 (C) 3 (D) 4 (E) None of the above

題號: 69

國立臺灣大學101學年度碩士班招生考試試題


科目:普通化學

節次: 8

題號: 69 共 3 頁之第 3 頁

(1). 敘述與計算題 (共 25 分):

- 31. Solid tin exists in two forms: white and gray. For the transformation $Sn(s, white) \rightarrow Sn(s, gray)$, the enthalpy change is -2.1 kJ/mol and the entropy change is -7.4 JK⁻¹mol⁻¹. Answer the following questions (3 marks each):
 - (31A) Calculate the Gibbs free energy change for the conversion of 1.00 mol white tin to gray tin at -30 °C.
 - (31B) Calculate the equilibrium constant of this transformation at -30 °C.
 - (31C) Will white tin convert spontaneously to gray tin at -30 °C?
 - (31D) At what temperature are white tin and grap tin in equilibrium at a pressure of 1 atm?
- 32. Consider bonding in second-period homonuclear diatomic molecules.
 - (32A) (5 marks) Explain the trend of bond length shown in the following graph (Hint: you can draw Lewis structures).

(32B) (5 marks) Consider molecular orbital (MO) theory for bonding in the oxygen molecule. Sketch the correlation MO diagram for O_2 using the oxygen 2s and 2p atomic orbitals. Explain why bond length of O_2^+ is shorter than that of O_2 .

(32C) (3 marks) Is molecular oxygen paramagnetic or diamagnetic? Explain your answer.