國立臺灣大學100學年度碩士班招生考試試題

科目:微積分乙(不含線性代數)

題號:384

題號: 384 共 乙 頁之第 / 頁

1. (30%) Suppose a random value y follows the g distribution, i.e., y can be expressed as a function of a normally distributed variable as follows.

$$y = \delta + \lambda \frac{\exp(gz) - 1}{g},$$

where δ and g are real numbers, λ is a positive real number, and z follows the normal distribution with mean to be μ and standard deviation to be σ . Given the constraint $[g(y-\delta)/\lambda+1]>0$, solve the following problems.

- (a) (4%) Express z in terms of y, i.e., find the function h(y) = z.
- (b) (4%) With the function h(y), derive the density function of y, f(y),

according to the definition $f(y) = \frac{1}{\sigma\sqrt{2\pi}}|h'(y)|e^{-\frac{1}{2\sigma^2}(h(y)-\mu)^2}$, where μ and σ

are the mean and the standard deviation of z.

- (c) (8%) Derive the expectation of y, E(y).
- (d) (8%) Derive the variance of y, var(y).
- (e) (6%) Show that when g is zero, y follows a normal distribution. [Hint:

Consider the result of $\lim_{g\to 0} \frac{\exp(gz)-1}{g}$.]

- 2. (8%) Find the maximum and minimum values of f(x, y, z) = x + 3y z subject to $4x^2 + 2y^2 + z^2 = 4$.
- 3. (12%) A 10,000-cubic-foot-room has 500 smoke particles per cubic foot. A ventilation system is turned on that each minute brings in 500 cubic feet of smoke-free air, while an equal volume of air leaves the room. Also, during each minute, smokers in the room add a total of 10,000 particles of smoke to the room. Assume that the air in the room mixes thoroughly.
 - (a) (4%) Find a differential equation and initial condition that govern the total number y(t) of smoke particles in the room after t minutes.
 - (b) (4%) Solve this differential equation.
 - (c) (4%) Find how soon the smoke level will fall to 100 smoke particles per cubic foot. (If the answers are with decimal numbers, please round to the nearest hundredth.)

題號:384

國立臺灣大學100學年度碩士班招生考試試題

科目:微積分乙(不含線性代數)

題號: 384 共 2 頁之第 2 頁

4. Evaluate:

(a) (5%)
$$\phi(\alpha) = \int_0^\infty \alpha e^{-\alpha x} dx$$
 for $\alpha > 0$.

(b) (10%) Evaluate $\int e^{x^2} dx$, approximately by using Taylor's theorem of the mean and estimate the maximum error.

5. Let φ be a continuous real function on $[0, \alpha]$. Assume that $\varphi(x) > 0$ if $0 < x \le \alpha$ and that $\varphi(x) \sim Ax^r$ as $x \to 0$ $(A > 0, r \ge 0)$. For all t > 0 set

$$F(t) = \int_{0}^{\alpha} \frac{dx}{t + \varphi(x)}.$$

(a) (10%) Show that if r > 1, then as $t \to 0$

$$F(t) \sim \frac{\pi}{rA^{1/r}\sin(\pi/r)} \cdot \frac{1}{t^{1-1/r}}.$$

(b) (10%) Show that if r = 1, then as $t \to 0$

$$F(t) \sim \frac{1}{A} \log \frac{1}{t}.$$

6. Suppose that $a_n \to c$ as $n \to \infty$ and that $\{a_i\}_{i=1}^{\infty}$ is a sequence of positive terms

for which
$$\sum_{i=1}^{n} \alpha_i \to \infty$$
 as $n \to \infty$.

(a) (10%) Show that

$$\frac{\sum_{i=1}^{n}\alpha_{i}a_{i}}{\sum_{i=1}^{n}\alpha_{i}}\to c \quad \text{as} \quad n\to\infty. \text{ In particular, if} \quad \alpha_{i}=1 \quad \text{for all i, then}$$

$$\frac{1}{n} \sum_{i=1}^{n} a_i \to c \text{ as } n \to \infty.$$

(b) (5%) Show that the converse of the special case in (a) does not always hold by giving a counterexample of a sequence $\{a_n\}_{n=1}^{\infty}$ that does not converge, yet $\frac{1}{n}\sum_{i=1}^{n}a_i$ converges as $n\to\infty$.

試題隨卷繳回