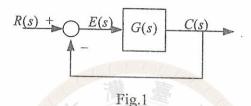
題號: 238

國立臺灣大學99學年度碩士班招生考試試題

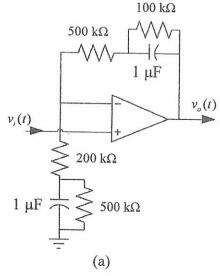

科目:控制系統(B)

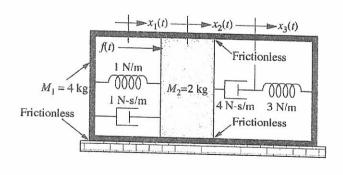
題號: 238 共 ≥ 頁之第 / 頁

總分 100 分

- 1. Stability is the most important system specification. Please explain the following problems about stability:
 - (a) Please explain the natural response definition of stability. (5%)
 - (b) Please explain the BIBO definition of stability. (5%)
 - (c) In the unity feedback system of Fig. 1 with $G(s) = \frac{1}{4s^2(s^2+1)}$, please use the

Routh-Hurwitz criterion to discuss the locations of the the closed-loop poles in the s-plane. (10%)


2.


Please clarify the following important problems of automatic control:

- (a) Please explain the following terms using a differential equation:
 - (i) linear and nonlinear (4%)
 - (ii) time-invariant and time-variant (4%)
 - (iii) causal and noncausal (4%)
- (b) What kind of systems is discussed in automation control. (4%)
- (c) Please explain the difference of the initial conditions between transfer function and state equation. (4%)
- 3. Find the transfer function of the following systems:

(a)
$$G(s)=V_o(s)/V_i(s)$$
 (10%)

(b)
$$G(s)=X_3(s)/F(s)$$
 (10%)

(b)

Fig.2

見背面

國立臺灣大學99學年度碩士班招生考試試題

科目:控制系統(B)

題號:238

題號: 238 共 → 頁之第 → 頁

4. A control system is shown in Fig.3.

where
$$D(s) = \frac{s+a}{s+8}$$
 and $G(s) = \frac{10}{s(s+1)}$

- (a) Sketch the root locus plot. (10%)
- (b) Determine the value of a such that the damping ratio of the dominant poles is $\varsigma = 0.5$.

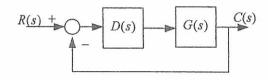


Fig.3

- 5. A unity-feedback system is shown in Fig.3 with $G(s) = \frac{1}{s(s+2)}$
 - (a) Please design a phase-lead compensator $D(s) = \beta \frac{1 + \alpha Ts}{1 + Ts}$ to make the loop transfer function D(s)K(s) satisfy the following conditions: (i) velocity constant=10; (ii) phase margin= 60° ; (iii) gain margin ≥ 12 dB. (15%)
 - (b) If a phase-lag compensator is designed for the same system and conditions as (a), please explain the differences between the phase-lead compensated and the phase-lag compensated systems. (5%)