國立臺灣大學99學年度碩士班招生考試試題 科目:統計學(C) 題號: 209 題號: 209 共 / 頁之第 全頁 ## (說:可使用工程型計算機) - 1. Let X_i , i=1,2,3,...,n, be independent random variables each having the standard normal density of $N(0,1)=\frac{1}{\sqrt{2\pi}}\exp[-\frac{1}{2}x_i^2], -\infty < x_i < \infty$. Find the probability density function of $Z_1=\sum_{i=1}^n x_i$ and $Z_2=\sum_{i=1}^n x_i^2$. (本題同意直接引述相關定理導出,正確給 20 分) - 2. Suppose the times of successive failures of a machine form a Poisson process on $[0,\infty)$ with parameter λ . What is the probability of at least one failure during the time period (t,t+h), h>0? (正確給 10 分) - 3. It is known that a sample of 12, 11.2, 13.5, 12.3, 13.8, 11.9 comes from a population with the probability density function $$f(x;\theta) = \begin{cases} \frac{\theta}{x^{\theta+1}}, & x > 1\\ 0, & \text{otherwise} \end{cases}$$ where $\theta > 0$. Find the maximum likelihood estimate of θ . (正確給 10 分) - 4. In a statistical estimate or test issue, (a) why do we apply the *student-t* distribution to measure the mean in a small sampling size? (b) why do we apply the *Chi-square* (χ^2) distribution rather an exact variance distribution to measure the variance? (what is the relationship between the *Chi-square* distribution and an exact variance distribution?) (c) why do we apply *F*-distribution to measure the difference of variance (for example, $\sigma_1^2 \sigma_2^2 = \Delta$) from two populations? (d) why do we obtain more precise result if we can apply the Bayesian approach rather than the classical approach to analyze the issue? (正確給 30 分) - 5. Interpret the following result which is obtained from the statistical analysis software of SAS: (a) Write down the regression equation; (b) There is a column listing degrees of freedom (DF), say: Model, Error and Total. Can you explain how they are figured out? (c) Is this regression acceptable? Why? (at least give three reasons or messages from the table); (d) What is the purpose that the software outputs those residuals? How to make a further analysis? Any improvement for this problem? (正確給 30 分) | | | Sum of | of Varia | n | | | | |--|---|--|---|---|--|---|-------| | Source
Model
Error
C Total | 9E . E | Squares
9.45437
8.67640
8.13077 | Squar
133.1514
139.2979 | 8P. 0E | | | | | Root MSE
Dep Mean
C.V. | 70.5
åED.95
åEL.7 | | uare D. | 9117 | | | | | | | Para | meter Est | imates : | | | | | Variable
INTERCEP
X1
X2
X3 | DF
1 3
1 - | arameter
Estimate
9.157350
1.016100
1.061649
0.343260 | Stand
BI
5.88705
0.19089
0.26732
0.61705 | ror Para
963
520
550 | for FO:
meter = 0
6.651
5.323
-6.964
-0.556 | Prob> T
 0.0001
 0.0005
 0.0001
 0.5916 | | | OBS | אין | 100 100 100 100 100 100 100 100 100 100 | BSIDUAL
1.851412
1.851412
1.949542
1.4490542
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1.5519116
1 | CLN_L
24.15075
20.43575
24.2757
25.4095
25.4095
26.4222
26.0204
26.5024
26.2752
26.2752
26.2752
26.2752
26.2752
26.2752 | CLM_D | CLI_L
21.6733
27.2442
21.7424
32.7960
9.6457
23.2169
21.0413
27.0755
21.725
21.7066
26.7458
26.7458 | CLI_U |