國立臺灣大學99學年度碩士班招生考試試題

科目:統計學(C)

題號: 209

題號: 209

共 / 頁之第 全頁

(說:可使用工程型計算機)

- 1. Let X_i , i=1,2,3,...,n, be independent random variables each having the standard normal density of $N(0,1)=\frac{1}{\sqrt{2\pi}}\exp[-\frac{1}{2}x_i^2], -\infty < x_i < \infty$. Find the probability density function of $Z_1=\sum_{i=1}^n x_i$ and $Z_2=\sum_{i=1}^n x_i^2$. (本題同意直接引述相關定理導出,正確給 20 分)
- 2. Suppose the times of successive failures of a machine form a Poisson process on $[0,\infty)$ with parameter λ . What is the probability of at least one failure during the time period (t,t+h), h>0? (正確給 10 分)
- 3. It is known that a sample of 12, 11.2, 13.5, 12.3, 13.8, 11.9 comes from a population with the probability density function

$$f(x;\theta) = \begin{cases} \frac{\theta}{x^{\theta+1}}, & x > 1\\ 0, & \text{otherwise} \end{cases}$$

where $\theta > 0$. Find the maximum likelihood estimate of θ . (正確給 10 分)

- 4. In a statistical estimate or test issue, (a) why do we apply the *student-t* distribution to measure the mean in a small sampling size? (b) why do we apply the *Chi-square* (χ^2) distribution rather an exact variance distribution to measure the variance? (what is the relationship between the *Chi-square* distribution and an exact variance distribution?) (c) why do we apply *F*-distribution to measure the difference of variance (for example, $\sigma_1^2 \sigma_2^2 = \Delta$) from two populations? (d) why do we obtain more precise result if we can apply the Bayesian approach rather than the classical approach to analyze the issue? (正確給 30 分)
- 5. Interpret the following result which is obtained from the statistical analysis software of SAS: (a) Write down the regression equation; (b) There is a column listing degrees of freedom (DF), say: Model, Error and Total. Can you explain how they are figured out? (c) Is this regression acceptable? Why? (at least give three reasons or messages from the table); (d) What is the purpose that the software outputs those residuals? How to make a further analysis? Any improvement for this problem? (正確給 30 分)

		Sum of	of Varia	n			
Source Model Error C Total	9E . E	Squares 9.45437 8.67640 8.13077	Squar 133.1514 139.2979	8P. 0E			
Root MSE Dep Mean C.V.	70.5 åED.95 åEL.7		uare D.	9117			
		Para	meter Est	imates :			
Variable INTERCEP X1 X2 X3	DF 1 3 1 -	arameter Estimate 9.157350 1.016100 1.061649 0.343260	Stand BI 5.88705 0.19089 0.26732 0.61705	ror Para 963 520 550	for FO: meter = 0 6.651 5.323 -6.964 -0.556	Prob> T 0.0001 0.0005 0.0001 0.5916	
OBS	אין	100 100 100 100 100 100 100 100 100 100	BSIDUAL 1.851412 1.851412 1.949542 1.4490542 1.5519116 1	CLN_L 24.15075 20.43575 24.2757 25.4095 25.4095 26.4222 26.0204 26.5024 26.2752 26.2752 26.2752 26.2752 26.2752 26.2752	CLM_D	CLI_L 21.6733 27.2442 21.7424 32.7960 9.6457 23.2169 21.0413 27.0755 21.725 21.7066 26.7458 26.7458	CLI_U