題號: 45 國立臺灣大學113學年度碩士班招生考試試題

科目:線性代數(A)

節次: 4

題號:45

共 2 頁之第 1 頁

※ 注意:請於試卷上「非選擇題作答區」內依序作答,並應註明作答之大題及其題號。

Instructions.

• There are two problems in two pages.

In a problem, if an exercise depends on the conclusions of other exercises that precede
it, you may assume these conclusions without solving them.

Problem 1 (80 points). Let m and n be two positive integers. The C-vector space of matrices of size $m \times n$ with coefficients in C is denoted by $M_{m,n}(C)$. We also set $M_n(C) = M_{n,n}(C)$.

The aim of this problem is to prove the following statement.

Theorem. Let m, n and r be positive integers with $r \le m \le n$. Let $V \subset M_{m,n}(\mathbb{C})$ be a \mathbb{C} -linear subspace. Assume that every matrix A in V satisfies rank $A \le r$. Then

$$\dim V \leq nr$$
.

- (1) Show that it suffices to prove the theorem for m = n.
- (2) Assume that m = n. Show that we can assume that V contains the block matrix

$$R = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$$

where I_r is the identity matrix of rank r.

From now on, we assume that m = n, and that $R \in V$.

(3) Let

$$M = \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \in V$$

be a block matrix in V with $M_{11} \in M_r(\mathbb{C})$. Show that

$$M_{22} = 0$$
 and $M_{21}M_{12} = 0$.

(Hint: you may consider the $(r+1) \times (r+1)$ minors of M+tR for $t \in C$.)

(4) Let

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & 0 \end{pmatrix} \in V, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & 0 \end{pmatrix} \in V$$

be two block matrices with A_{11} , $B_{11} \in M_r(\mathbb{C})$. Show that

$$A_{21}B_{12} + B_{21}A_{12} = 0.$$

(5) Let $\phi: V \to M_{r,n}(\mathbb{C})$ be the map sending a matrix $M \in V$ to its first r rows. Define the C-linear subspace

$$W = \left\{ \begin{pmatrix} 0 & 0 \\ A_{21} & 0 \end{pmatrix} \in V \middle| A_{21} \in M_{n-r,r}(\mathbb{C}) \right\} \subset V,$$

題號: 45

國立臺灣大學113學年度碩士班招生考試試題

科目:線性代數(A)

節次: 4

超死・45

共 2 頁之第 2 頁

and let $s = \dim W$. Show that

 $\dim \phi(V) \le nr - s,$

by considering the map

$$\psi:W\to M_{r,n}(\mathbb{C})^\vee$$

$$\begin{pmatrix} 0 & 0 \\ A_{21} & 0 \end{pmatrix} \mapsto T_{A_{21}}$$

to the dual of $M_{r,n}(\mathbb{C})$, where $T_{A_{21}}$ is the linear form defined by

$$T_{A_{21}}(B_{11},B_{12})=\mathrm{Tr}(A_{21}B_{12})$$

for every block matrix $(B_{11}, B_{12}) \in M_{r,n}(\mathbb{C})$ with $B_{11} \in M_r(\mathbb{C})$.

(6) Conclude that

 $\dim V \leq nr$.

(7) Show that the inequality in the theorem is optimal. More precisely, for all positive integers m,n and r with $r \le m \le n$, construct $V \subset M_{m,n}(\mathbb{C})$ as in the theorem such that

 $\dim V = nr$.

Problem 2 (20 points). Let V be a nonzero vector space over a field F. Let

$$B: V \times V \rightarrow F$$

be a non-degenerate symmetric bilinear form on V, and let

$$q:V\to F$$

$$v\mapsto B(v,v)$$

be the associated quadratic form. For every $x \in F$, we say that q represents x if q(v) = x for some nonzero $v \in V$.

- (1) Suppose that q represents 0. Show that q represents every element of F. (Hint: Consider q(cv+w) with $c \in F$ and some suitable $w \in V$.)
- (2) Show that B extends to a non-degenerate symmetric bilinear form on $V \oplus F$ whose associated quadratic form represents every element of F.