312 R ERAXE 113 SEERLHBAFREN
ﬁﬁ%ﬂﬁﬁ#i& N é

MR 312
Kz% / R®

ABUER 12 MRRE (B 1-12) - 93 HEYE 6 WAESE > LSAMRE - LREEHE 5
70 EIEE 1 5 REERTS - WRESEEELEN S RELNEBRERS T 8 BEE
SECMEE 2 —08 BEZERERESS BEE 0 5 - BEEENERE LS. BE_HE
IEREE (Y 13) > ERREA LR -

1. {5 points) Consider the following variation of the Selection Problem: Given a sequence S = (g3,as,...,G,;)
of n distinct integers and two positive integers = and ¥, where cach number in § falls between 1 and
¥, the goal is to report the smallest £ numbers in § in ascending order. This scenario assumes the
conventional single-processor, random access machine (RAM) model, with a machine word size of at
least [logy] bits. To tackle this problem, five algorithms have been proposed. Please select the correct
description(s) below.

A. Algorithin A: The algorithm initializes an empty max-heap and sequentially inserts numbers
from S§. During insertion, if the size of the max-heap exceeds x, it removes the maximumn
element from the heap. Finally, the remaining numbers in the heap are sorted by heapsort
and reported. If z < n/logn, Algorithm A runs in O(n) time in the worst case.

B. Algorithm B: The algorithm initially constructs a min-heap and proceeds to extract the mini-
mum element times. If = < n/logn, Algorithm B runs in O(n) time in the worst case.

C. Algorithm C: The algorithm begins by performing « base-n radix sort, followed by reporting
the smallest o values. If 3 < n2, Algorithm C rups in O(n) time in the worst case,

D. Algorithm D: The algorithm performs a counting sort by allocating an array C of length ¥,
traversing through .S and incrementing Cfla;) for cach a;. It finally reports the smallest z values
by scanning through the counter array. If y < n2, Algorithm D runs in O(n) time in the worst

- case, : '

E. Algorithm E: The algorithm first applies quickselect, i.e., Randomized-Select, to determine
the 2-th smallest number in S. Subsequently, it traverses § for extracting all numbers smaller

than or equal to the x-th smallest munber. Finally, these z numbers are sorted by quicksort
and reported. The time complexity of Algorithm E is O(n + zlogx) in expectation.

2. (5 points) A Maximum Binary Tree (abbreviated as MaxBT) is defined as a binary tree that adheres
to the max-heap property without the necessity of following the complete binary tree property. In a
MaxBT, each node p consists of a value (p.data) and two links (p.left and p.right) pointing to the left
and right children, respectively. A link to nil indicates the absence of further children.

The provided pseudocode, although incomplete, implements a recursive function for merging two MaxBTs
into a single MaxBT. This function takes the root nodes of the two MaxBTs {rootl and 7o0t2) as input
and returns the root node of the merged MaxBT.

1: function MergeMaxBinaryTrees(root1, root2)

2: if reot? = nil then return (8} end if

k¥ if root2 = nil then return (b) end if

4 if rootf.data > root2.data then

5: . (e + MergeMaxBinaryTrees{ (d) fe))
i return {f) '

7 clse

8 {g) ¢ MergeMaxBinaryTrees((h) (i))
u: return {i) :
10: end if

11: end function

Assuming all the blanks in the above function have been appropriately filled to ensure its proper func-
tioning, please select the correct description(s) below.

A. (b) and () are the same,
B. (c), {d), and (e) are all distinct.

AE &

AR
B

ﬁﬁﬁﬂﬁﬁ#%

B EMAS 113 SLERALHRALRBM

MR :

312

£ 6 Rz2Z 2 R

C. In the cases of (¢) and (g), each has only one correct answer.
D. Exchanging the filled content of (h) and (i) leads to a correct implementation.

E. The function works correctly even when the two arguments passed into it refer to the same
tree.

3. (5 points) A Dynamic Array (abbreviated as DArray) is a type of array that permits the insertion

and deletion of clements at the end to dynamicelly adjust its size. DArray D maintains three crucial
attributes, including the underlying array D.data, the logical data size D.size, and the actual array
capacity D.capacity. The invariant D.size < D.capacity holds at any given moment. The Insert(D, x)
operation appends the element x to the end of D.data. In case D.size = D.copacity, it triggers a call to
Resize(D) before appending , where Resize(D) allocates a new and larger array, moves all the data to it,
increases the value of D.capacity, sets up D.data, and finally frees the old array. T'wo implementations
of Resize(D) are provided: ResizeA(D) increases D.capacity by a constant (e.g., 10} while ResizeB{D)
doubles D.capacity each time.

To initialize DArray D, we set D.size to 0, D.capacity to 1, and allocate a size 1 array to D.data.
Assuming that both allocating and freeing arrays of length n take O(n) time, and moving a single
element takes O(1) time, please select the correct description(s) below.

A. DArray is not suitable for random access hecause its mernory may be relocated.

B. DArray can only be allocated in the heap memory due to its dynamic memory nature.

C. If ResizeA(D) is considered, the amortized time complexity of Insert(D, x) is O(1).

D. I ResizeB(D) is considered, the amortized time complexity of Insert(D, z) is O(1).

E. In the Delete(D) operation, if D.size > 0. D.size is decreased by one. I, at this stage,
D .size < [D.capacity/2], we create a new array d’ with a size of [D.capacity/2], transfer the
data to d', set up d’ as the new data array for D.data, and subsequently free the old array.

Then, the amortized time complexity of mixed Insert and Delote operations can be O(1), where
Resize(D) can be either ResizeA(D) or ResizeB(D). ' '

. (10 points) Consider a hash function h that maps numerous keys into an array A, indexed from 0 to n—1.

The concern is that excessive collisions arising from the hashed keys can potentially cause inefficiency
within the hash table. The following pseudocode, while not complete, implements a function that utilizes
the divide-and-conquer strategy to identify the case where strictly more than half of the keys share the
same hash value. The function takes the hash function & and the subarray A with the index range from
low to high as input and returns the majority hash value shared by over |{(high — low +1}/2| keys. If the
keys stored in the subarray Allow..high} do not have such a majority hash value, the function returns
~1.

1: function FindMajorityHashValue(h, A, low, high)
2: if low = high then return h{Aflow)) end if

3 mid « [(low + high) /2]
4: lefiMagjority < FindMajorityHashValue(h, A4, low, mid)
5 rightMajority < FindMajorityHashValue(h, A, mid + 1, high)

6: leftCount + CountElement{A, low, high, leftMajority)
T rightCount + CountElement(A, low, high, rightMajority)

8:

9: end function

In the pseudocode, CountElement(A, low, high, val) calculates and retwrns the count of keys in the sub-

array Allow..high] whose hashed values are equal to the given val. Please select the correct description(s)
below,

BRXR

=k
S m 8§

312 C BEXERKRE 113 REEFEL BB A EFRRG
RH &SRk M 312
1 ‘ % 6 Rz® 2 R

A. If leftMajority = rightMajority = —1, A[low..high] may still have a majority hash value.

B. If A[low..high] has a majority hash value and rightMagjority = —1, the function should return
leftMajority.

C. Tt leftCount = rightCount, the function should return —1.

D. Suppose that an implementation of CountElement runs within ©(£) time, where £ = high —
low + 1. The time complexity of FindMajorityHashValue can be O(nlogn).

E. Suppose that a magical implementation of CountElement runs within {2/ log £) time, where
£ = high — low + 1. The time complexity of FindMajorityHashValue can be O(n).

5. (10 points) A Binary Search Tree (abbreviated as BST) is a tree structure comprised of nodes that
maintain a specific order among their keys. Given a single node = and two BSTs L and A, in which
Lkey < wkey < r.key for all nodes I € L and r € R, the objective is to design a Join(L, z, R) function
that integrates the given input into a unified BST T with the nodes L U {z} U R. Be aware that AVL
and Red-Black trees are specific types of BSTs. Given the constraint that T, L, and R must share the
same type, they are required to be either all BSTs, all AVL trees, or all Red-Black trees.

The Join(L, z, R) function is implemented with the steps: (1) selecting a subtree T from either L or
R, where a subtree is defined as potentially heing empty, a portion, or the entire tree, (2) detaching 7",
(3) attaching T” under the node =, (4) attaching the other tree (which does not contain T’) under =,
and (5) re-attaching the tree rooted at = to the former parent of T/, The modified tree is then returned
as T. If 7" has no former parent, the tree rooted at a is simply returned as 7. The following figure
demonstrates an example result of Join({L,,x;, B;), where the letters e, 3, v, 4, and 57 denote arbitrary

subtrees. Inside a circle, the value represents the key of a node.

Join(Ly, 21, B !

Ll 3]

JoRe

Please note that almost all steps, except for (1), have been finalized — there could be multiple ways to
choose 7” in (1). The tree returned from Join(L,:x, R) may not be unique. Additionsglly, unlike AVL
or Red-Black trees, Join(L, x, R} does not perform re-coloring and re-balancing. Consider the following

arguments passed into Join(Ls, wp, Rz). All nil nodes (considered as leaves in red-black trees) are omitted
for brevity.

Lo T2

(2) ®
O ®

Please select the correct description(s) below.

A. If no additional balance is required for Ly and Rs, i.e., both Lo and R, are BSTs, there are 6
possible tree shapes that could be returned from Join(Ls, z2, Ry).

AR &

312

ﬁlﬁ\%ﬁﬁ-ﬁ ¥k

Bard@A$ 113 $L£EHA TP L HRRG

Mk 312

% 6 Rzg 4 R

B. If both L; and R, are AVL trees as observed, among all possible tree shapes returning from
Join(Lg, x2, Ry), there is a unique tree that is an AVL tree.

C. There are multiple ways to assign colors to the nodes in Itz to make Ry a red-black tree.

D. There exists a color assignment to all nodes in Ly U {22} U R, such that: (1) both L, and
Ry are red-black trees, (2) a red-black tree can be returned from Join(Ls, ¢, Ry), and (3) the
node with the key 4 is BLACK.

E. There exists a unique color assignment to all nodes in L, U {w2} U Rz such that: (1) both L,
and Ry are red-black trees, (2) a red-black tree can be returned from Join(La, s, Rp), and (3)
the node with the key 1 is BLACK.

6. (5 points) We want to multiply a sequence of matrices My, ..., M, with the minimuro number of multj-

plications. Since the matrix multiplication is associative. we can parenthesize the matrix multiplication
in all possible orders. Let m;; be the minimum number of muitiplications to multiply M;,..., M;. We

can derive a recursion of m;,;, where r; and ¢; are the numbers of rows and columns of the matrix M;
respectively.

Mg = (gt g+ rioess) (1)

Now consider m, g4k, 1 < s < s+ k < m. For given s and k. let x be the number of m; ;’s that have
Myatt 8¢ the right hand side of Equation 1, and let % be the number of different m’s that are at the
right-hand side of Equation 1 when i = s and j = s + k. What is the approximate velue of x 4 37

A s("3")

B.n+k
C.n—s)n—s—-k&)
D. (3)+(3)

E ("7 + ()

. (5 points) When we compute all m; ;'s with Equation 1, we must follow an order of i and 7 so that the
13

m’s on the right-hand side are all known when we compute m; ;. Please select all the correct orders in
the following choices.

A, decreasing order of 1 + §

B. incressing order of i + j

C. increasing order of (i — 7)?

D. decreasing order of (i — j)°

E. increasing order of |(i + 7)(i — 5)]

. {5 points) We define the height of a tree to be the maximum number of edges from the root to z leaf, .

We also define the level of a node v, denoted as {(v) to be the height of the subtree rooted at v. Which
of the following descriptions is correct?

A. If v is a leaf, then I{v) = 1.
B. If v is an internal node, /(v) = max,es {(s); where S is the set of children of ».

C. We can compute I(v) by starting a breadth-first-scarch (BFS) from v, traversing all nodes of
the subtree rooted at v, and computing the maximum distance to a leaf as I(v). Since there
are 1o more than n v’s and each BFS takes O(n) time, the total time complexity is O(n?)

D. We can compute the levels for all nodes by a depth-first-search (DFS) starting from the root

of T That is, we can compute the level of an internal node v after we compute the ! values of
all children of v.

E. Since there are n tree nodes to visit, the DFS from the root takes O(n) time.

BRE

=
S m 86

- 312 HAER AR 113 REEMAIHHAEAHIA
Rob &M R ok AW 312
1 s 6 Rz € R

9. (5 points) We have « hinary tree T and for every node » € T, we want to compute the new height if we
select v as the new root.

We consider the effect of making v the new ruot. First, the height of the subtree of v is still I(v). Second,
since ¢ is now the new root, it could go up to its parent and then to the farthest leaf. We define this
distance as r(v).

A. The new tree after sclecting a new root is always a binary tree.
B. The height of the tree after making v the new root is max{{(v), r(v)).

C. We can compute r(w) for all tree node v's in & top-down manner. We assume that the » value
of v's parent in T is known, so v only needs to consider the + value of its parent and the {
value of its sibling in T, in order to compute its own r.

D. The r value of the root of T is 1.
E. We can compute the # values for all nodes in O(n) time.
10. (5 points) Consider a sequence of numbers (vy,...,v,). Now we remove k& numbers from the sequence

s0 that we have &+ 1 non-empty segments of numbers. For example, consider (2,3, 8,1,4). If we remove
& then we have two segments (2,3) and (1,4).

Now we want to minimize the maximum sum of numbers of a segment. Let m(1,m,%) be the answer,
then what is the correct recursion for m when 1 € i< j<nand0<k € (j—4)/27

A. m(i, j, k) = minf_; max(Z:_Lm ty.mi, 2k — 1))
B. m{i,j,k) = minJ_} max(zg';;_,,,+1 vy.mli,x—1,k—-1))
C. mli,j, k) = mindZ},, max(m(z + 1,5,k — 1), 72} vy)
D. m(4, 3, k) = milyqpmp-1,2.w>0 mini;ﬁ {max(m(i.z — 1,0),m(z + 1, j,w))
E. m{i, j, k) = minyw—p_1,p.wz0 mini=i(n1ax(nl(z',), m{z, j,w))
11. (5 points) Which of the following descriptions is true for the previous problem?
A. We can always find an optimal solution that removes one of the largest ».
B. We can always find an optimal solution that does not remove one of the smallest v.
C. The initial value for m(i, 4, 0) is n;.
D. The initial value for m(, j. k) when & > (§ —)/2 is 0.
E. The initial value for m(i,i+ 2.1), 1 £i < n — 2 is max{(v;, vig2).
12. (5 points) Consider a directed acylic graph G = (V, E) of n tasks where every node is a task and every
edge is a dependency. If there is an edge from a task v to another task w, that means we need to finish

v before starting w. We have p processors of the same capability and every processor can finish any task
in one unit of time.

We defiue a schedule function s to map a task v to a positive integer time step s(v). Siuce we have only
D processors, 5o the system can only process at most p tasks in one timne step. Also, a schedule needs to
respect the dependency of edges.

A. Tor every positive integer i, {{r|s(v} < i}{ < p.
B. If there is a path (v;,,...,%;,) in G, then s(u;) < s(vy,) for 1 <5< k.

C. The number of time steps required is at least min([n/p]. L), where L iz the number of tasks
along the longest path in G.

o)

. Without loss of generality, we can always assume s(v) = 1 for all #'s without incoming edges.

E. If the number of processors is infinite, then we can finish all tasks in L time stops, where L is
the number of tasks along the longest path in G.

AL#E &

312

%lﬂﬁﬁﬁiﬁﬁl:‘%

BiaEBRE 113 S$5EATERELRRE

£ 6 ®

AL
z%

312
R

13. (30 points) A vertex cover of an undirected graph G = (V, E) is a subset V' C V such that if (u.v) € B,

then either u € V' or » € V” (or both). The size of a vertex cover is defined as the number of vertices in
it. The vertex-cover problem is to find a vertex cover of minimum sizc in a given undirected graph. It
has been shown to be NP-hard, thus we cannot tind a polynomial-time algorithm for solving it cxactly
unless NP = P. Fortunately, some polynomial-time approximation algorithms have been proposed for
solving the vertex-cover problem.

The following two approximation algorithms take as input an undirected graph and compute a vertex
cover for it. Initially, all edges in the graph are uncovered for both Algorithm VC-Arbitrary and Algo-
rithm VC-Max-Degree. Once a vertex v is put into the cover, all edges incident on v are covered and
removed.

Algorithm VC-Arbitrary picks an arbitrary uncovered edge {u,v), puts both u and v into the cover,

throws out all edges incident on either w or v, and repeats the process wntil there are no uncovered edges
left.

Algorithm VC-Max-Degree picks a vertex v that covers the most number of uncovered edges, puts v into

the cover, throws out all edges incident on », and repeats the process until there are no uncovered edges
left.

{a) (10 points) Give an example for which Algorithm VC-Arbitrary yields a solution that is at least
double the size of a minimum-size vertex cover. Give another example for which Algorithm VC-
Max-Degree will definitely yield a solution with the size more than that of a minimum-size vertex
cover no matter how it breaks the tic, Each example should contain no more than ten vertices.
You have to justify your solution by showing the vertex cover found by the algorithm and its
corresponding minimum-size vertex cover.

{b) (18 points) Prove or disprove that Algorithm VC-Arbitrary has a smaller ratio bound than Algo-
rithm VC-Max-Degree. The ratio bounds in your proof or disproof should be as tight as possible.

(¢) (10 points) In the weighted vertex-cover problem, you are given an undirected graph G = (V, E)
-and a weight w(v) for each vertex v € V, and the objective is to find a vertex cover (covering all
edges in F) of minimnum total weight. Tu other words, the goal is to find a vertex cover € of € such
that 7 .~ w(v) is minimized among all possible vertex covers of G. You are required to formulate
the weighted vertex cover problem as an integer linear program.

AU AT

