題號: 216 科目:統計理論

節次: 4

題號: 216

共 / 頁之第 / 頁

1. (13 points) Suppose that Y_1, \ldots, Y_n are independent binomial (m_i, p) , where the $m_i \geq 1$ are known constants. Let

$$T_1 = \frac{\sum_{i=1}^n Y_i}{\sum_{i=1}^n m_i}$$
 and $T_2 = \frac{1}{n} \sum_{i=1}^n \frac{Y_i}{m_i}$

be estimators of p.

- (1a) Find the mean squared error (MSE) of T_1 , MSE(T_1). (5 points)
- (1b) Find the mean squared error (MSE) of T_2 , MSE(T_2). (5 points)
- (1c) Which estimator is better? (3 points)

Hint: the arithmetic-geometric-harmonic mean inequality,

$$\frac{1}{n} \sum_{i=1}^{n} x_i \ge \frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}}$$

2. (28 points) Let X_1, \ldots, X_n be independent identically distributed random variables with pdf

$$f(x) = \frac{\theta}{2(1+|x|)^{(\theta+1)}}, \ -\infty < x < \infty;$$

where the unknown parameter $\theta > 0$.

- (2a) Prove that $T = \sum_{i=1}^{n} \log(1 + |X_i|)$ is a complete sufficient statistic. (5 points)
- (2b) Find the Cramer Rao lower bound (CRLB) for estimating $1/\theta$. (10 points)
- (2c) Find the uniformly minimum variance unbiased estimator (UMVUE) for θ . (10 points) Hint: Find the distribution of $W = \log(1 + |X|)$.
- (2d) Find the maximum likelihood estimator (MLE) of θ . (3 points)
- 3. (9 points) Suppose that Y_1, \ldots, Y_n are iid sample from a normal distribution, $N(0, \sigma^2)$, where the population variance $\sigma^2 > 0$ is unknown. Let

$$Q = \left(\frac{\overline{Y}}{\sigma/\sqrt{n}}\right)^2 + \frac{(n-1)S^2}{\sigma^2},$$

where \overline{Y} and S^2 are the sample mean and sample variance, respectively. Show that the distribution of Q does not depend on σ^2 and use it to derive a $100(1-\alpha)\%$ confidence interval for σ^2 .

- 4. (10 points) Let X denote a random sample from a population π . Suppose that T(X) is a UMP test of size $\alpha \in (0,1)$ for $H_0: \pi = \pi_0$ and $H_1: \pi = \pi_1$, where π_0 and π_1 are two known populations. The power of T(X) when H_1 is true is denoted by β , where $\beta < 1$. Find a UMP test of size 1β for $H_0: \pi = \pi_1$ and $H_1: \pi = \pi_0$.
- 5. (20 points) Let X_1, X_2, \ldots, X_n and Y_1, Y_2, \ldots, Y_m denote independent random variables from $N(\theta_1, \theta_3)$ and $N(\theta_2, \theta_4)$, where $\theta_1, \theta_2, \theta_3, \theta_4$ are unknown parameters.
- (5a) Find an LR test for $H_0: \theta_1 = \theta_2$ and $H_1: \theta_1 \neq \theta_2$ under the assumption that $\theta_3 = \theta_4$. (10 points)
- (5b) Find an LR test for $H_0: \Delta\theta_3 = \theta_4$ and $H_1: \Delta\theta_3 \neq \theta_4$, where Δ is a known constant. (10 points)
- 6. (20 points) Let Y denote an $n \times 1$ multivariate normal random vector, denoted by $Y \sim N\left(X\beta, \sigma^2 I_n\right)$, where X is an $n \times p$ constant matrix with rank(X) = p, β is a $p \times 1$ parameter vector, and I_n is the identity matrix of order n. Find an LR test for $H_0: C\beta = d$ and $H_1: C\beta \neq d$, where C is an $r \times p$ full-row-rank constant matrix, d is an $r \times 1$ constant vector, and $r \leq p$.