題號: 200

國立臺灣大學 113 學年度碩士班招生考試試題

科目: 工程數學(G)

題號:200

共2頁之第1頁

節次:

(1)

(a) (10%) Find the eigenvalues and corresponding eigenvectors for the following matrix A.

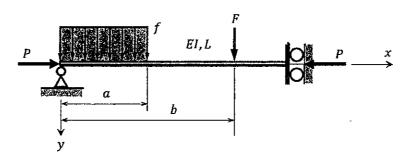
$$A = \begin{bmatrix} c_1 & c_2 & \dots & c_n \\ c_1 & c_2 & \dots & c_n \\ \vdots & \vdots & \vdots & \vdots \\ c_1 & c_2 & \dots & c_n \end{bmatrix}$$

(b) (5%) Let

$$A = \begin{bmatrix} -4 & -6 & 0 \\ 3 & 5 & 0 \\ 3 & 3 & 2 \end{bmatrix}$$

Find the characteristic polynomial and eigenvalues of A.

- (c) (5%) Continuing from (b), find, if possible, an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$. Otherwise, explain why A is not diagonalizable.
- (2) Let $f(x,y) = e^{xy}\cos(x+y)$.
 - (a) (5%) In what direction, starting at $(0, \pi/2)$, is f changing the fastest?
 - (b) (4%) In what direction, starting at $(0, \pi/2)$, is f changing at 50% of its maximum rate?
 - (c) (5%) Let c(t) be a flow line of $F = \nabla f$ with $c(0) = (0, \pi/2)$. Calculate $\frac{d}{dt}[f(c(t))]\Big|_{t=0}$
- (3) Consider the beam-column as shown below, where P = 1 and EI = 1.



The differential equation can be expressed as

$$EI\frac{\mathrm{d}^4 y}{\mathrm{d}x^4} + P\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = w(x)$$

where w(x) is the external load.

Please answer the following questions:

- (a) (6%). Use the Heaviside step function and the Dirac delta function to express the external load w(x).
- (b) (4%). Show the boundary conditions in terms of y.
- (c) (10%). If $Y(s) = \mathcal{L}\{y(x)\}\ (\mathcal{L} \text{ is the Laplace transform), please solve } Y(s)$.
- (4) Consider the following equation:

$$2x^2y'' + x(2x+1)y' - y = 0$$

- (a) (3%). Is x = 0 a singular point or a regular singular point?
- (b) (10%). If the equation has a Frobenius series solution of the form

$$y(x) = x^{\alpha} \sum_{n=0}^{\infty} a_n x^n$$
, $a_0 \neq 0$, $0 < x < \infty$

where a_n , n = 0, 1, ..., are constants to be determined. Please solve all α that satisfies the solution.

題號: 200

節次:

國立臺灣大學 113 學年度碩士班招生考試試題

科目: 工程數學(G)

6

題號:200

共2頁之第2頁

(5) Consider the following three partial differential equations:

$$\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} + \frac{\partial^{2} u}{\partial z^{2}} = 0, \quad (5-1)$$

$$k \left(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} + \frac{\partial^{2} u}{\partial z^{2}} \right) = \frac{\partial u}{\partial t}, \quad (5-2)$$

$$c^{2} \left(\frac{\partial^{2} u}{\partial x^{2}} + \frac{\partial^{2} u}{\partial y^{2}} + \frac{\partial^{2} u}{\partial z^{2}} \right) = \frac{\partial^{2} u}{\partial t^{2}}, \quad (5-3)$$

where u is a physical property which is a function of the spatial coordinates (x, y, z) and time t, and k and c are some material properties, which are assumed to be constants.

- (a) (7%) What are the names of the equations, and provide physical interpretation for each equation through a specific example.
- (b) (6%) If those three equations are to be solved separately in a cubic box with unit edge length, specify the appropriate boundary conditions for solving the equations, together with initial conditions (if any).
- (6) (20%) Solve the problem as shown in the figure below. The function u(x, y) satisfies the Laplace equation within the domain $0 \le x \le 1$, $0 \le y \le 1$, subjected to the boundary conditions as indicated next to the four boundaries at x = 0, x = 1, y = 0 and y = 1, respectively.

