題號: 55 ## 國立臺灣大學 112 學年度碩士班招生考試試題 科目: 分析化學(B) $Mn^{2+} + 2e \rightarrow Mn, E^{\circ} = -1.18 \text{ V}.$ 題號: 55 節次: 共 2 頁之第 1 頁 Fill in the blanks. 2.5 points for each blank. Fill the **final results** in the blanks only. All answers must be written on the answer sheet. ※ 注意:請於試卷內之「非選擇題作答區」標明題號依序作答。 1. If $[H^+] = (8.0 \pm 0.4) \times 10^{-5} M$, pH = $\log 2 = 0.30$ The uncertainty must be included in the final answer. 2. Four measurements of the percentage of an additive in food yield a confidence limit of 1.40 ~ 1.88 at 95% confidence level (t is 3.2 for 3 degrees of freedom). For these measurements, the mean is _____ and the standard deviation is 3. A 50-mL aqueous solution contains 0.32 mg of a pesticide (molar mass = 320 g/mol). The concentration of the pesticide is An unknown sample of Pb²⁺ gives a signal of 0.40 in an AA analysis. Then 1.0 mL of solution containing 200 ppb Pb²⁺ is mixed with 95.0 mL unknown, and the mixture is diluted to 100.0 mL with a volumetric flask. The resulting solution gives a signal of (a) the concentration of Pb²⁺ in the unknown is (b) the method used in this question is called: Consider 0.10 M aqueous solutions of the following four species: (i) Na₂CO₃ (ii) KHSO₄ (iii) NH₄Cl (iv) NH₄F List these four solutions in the order of increasing pH: The volume of 0.50 M HCl(aq) needed to add to 0.50 M, 60 mL of NH₃(aq) (pK_b = 5.0) to make a buffer solution of pH 8.7 is Consider adding 50 mL of a buffer solution containing 1.0 M HA (pK_a = 5.0) and 1.0 M NaA to 50 mL of each of the following aqueous solutions: (i) 0.10 M NaA(aq), (ii) 0.10 M HA(aq), (iii) 0.10 M NaOH(aq), (iv) 0.1 M HCl(aq). The order of increasing pH values for these four mixed solutions is Given: $HA + B^- \implies A^- + HB$, K < 1 and $B^- + H_2O \implies HB + OH^-$, $pK_b < 7$. List the order of decreasing values of K's for $K_a(HA)$, $K_a(HB)$, $K_b(A^-)$, and $K_b(B^-)$: A sample solution is prepared by dissolving 3.2 g of a monoprotic acid HA (p $K_a = 5.0$) in water and dilute to 100 mL with a volumetric flask. Take 20 mL of the sample solution and titrate with 0.20 M NaOH(aq). It requires 20 mL NaOH(aq) to reach the end point. (a) The molar mass of HA is _____ g/mol (b) the pH of solution at equivalence point is (c) the pH of solution after adding 10 mL NaOH(aq) is 10. The triprotic acid H_3A has $pK_1 = 3.0$, $pK_2 = 6.0$, and $pK_3 = 9.0$. (a) For $[H_3A] = [A^{3-}]$, pH = ___ (b) At pH 8.0, $[HA^{2-}]/[A^{3-}] =$ (c) For 1.11 M H₃A(aq) at pH 7.0, $[A^{3-}]$ = M. 11. The solubility of AgCN ($K_{sp} = 1.0 \times 10^{-16}$) is S in water and 500S in 0.010 M HClO₄(aq). (a) $S = ___ M$ (b) $K_a(HCN) = __$ M for AgCN(s) dissolved in 0.010 M HClO₄(aq). (c) $[CN^{-}] =$ 12. A 25.0 mL sample solution of Ca²⁺(aq) is titrated with 0.16 M EDTA (H₆Y²⁺) solution at pH 9.0; it requires 15.0 mL to reach the end point. EBT (Eriochrome black T) is used as the indicator, which is blue at pH 9.0. Given: $K_f(CaY^{2-}) = 4.8 \times 10^{10}$; $\alpha_4 =$ $[Y^{4-}]/[H_6Y^{2+}]_{total} = 0.050.$ (a) the conditional formation constant for CaY²⁻ at pH 9.0 is (b) $[Ca^{2+}]$ of sample solution = M (c) [Ca²⁺] at the equivalence point = (d) Indicate the color change of EBT around the equivalence point: 13. A battery is constructed from two half cells: Zn|Zn²⁺(1.0 M) and Mn|Mn²⁺(1.0 M); the volume of each electrolyte solution is 100 mL. The battery is allowed to discharge at a constant current of 9.65 A. Given: $F = 96500 \text{ C} \cdot \text{mol}^{-1}$; $Zn^{2+} + 2e \rightarrow Zn$, $E^{\circ} = -0.76 \text{ V}$; 見背面 題號: 55 國立臺灣大學 112 學年度碩士班招生考試試題 科目: 分析化學(B) 題號:55 節次: 6 共2頁之第2頁 | | (a) the anode of the cell is (b) the direction of electrode flow is (c) the standard cell potential is | |-----|--| | | (d) $[Zn^{2+}] = \underline{\hspace{1cm}}$ after 400 seconds of discharging. | | 14 | . A 200-mg sample of glycerol (C ₃ H ₈ O ₃ ; Mw = 92) is treated with 50.0 mL, 0.10 M Ce ⁴⁺ (aq) to give HCOOH and Ce ³⁺ in 3 M | | | HClO ₄ at 50°C for 15 min. The excess Ce ⁴⁺ required 20.0 mL of 0.050 M Fe ²⁺ to reach the end point. | | Ì | (a) give a balanced equation for the reaction of glycerol and Ce ⁴⁺ : | | | (b) give a balanced equation for the reaction of Ce ⁴⁺ and Fe ²⁺ : | | | (c) indicate the reducing agents for these two reactions: | | | (d) the percentage of glycerol in the sample is | | | (e) the procedure used in this question is called: | | 15. | A three-electrode system commonly used in electrochemical measurements consists of working, auxiliary (also called counter) | | | and reference electrodes. | | | (a) write the half-reaction for calomel electrode (a reference electrode): | | | (b) indicate the purpose of working electrode: | | | (c) indicate the purpose of auxiliary electrode: | | 16. | A sample solution of compound X exhibits an absorbance of 0.60 at 500 nm using a 2.0-cm cuvet. The molar absorptivity of X is | | | 10000 M ⁻¹ ·cm ⁻¹ at 500 nm. | | | (a) [X] = (b) the percentage of transmitted light is | | | (c) give a common light source for this measurement: | | | (d) give a common detector for this measurement: | | | | ## 試題隨卷繳回