國立臺灣大學 112 學年度碩士班招生考試試題

科目: 代數題號: 47節次: 2共 1 頁之第 1 頁

47

1. (a) (5 points.) Let G be a group and d be a divisor of |G|. Let X be the set of elements of order d in G. Prove that the function $*: (g, x) \mapsto gxg^{-1}$ defines a group action of G on X.

- (b) (15 points.) Assume that G is a group of order 56 with 8 different Sylow 7-subgroups. Prove that there is a unique Sylow 2-subgroup and that it is isomorphic to $(\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$.
- 2. (a) (10 points.) Show that $\mathbb{Z}[\sqrt{-2}] := \{a + b\sqrt{-2} : a, b \in \mathbb{Z}\}$ is a Euclidean domain.
 - (b) (10 points.) Find the GCD of $32 + 52\sqrt{-2}$ and $24 + 36\sqrt{-2}$ in $\mathbb{Z}[\sqrt{-2}]$.
- 3. (20 points.) Let R be a commutative ring with 1 and M(n, R) be the ring of $n \times n$ matrices over R. Show that every (two-sided) ideal of M(n, R) is of the form M(n, I) for some ideal I of R.
- **4.** (20 points.) Let $a, b \in \mathbb{Z}$. Find the necessary and sufficient conditions such that $\mathbb{Q}(\sqrt{a+\sqrt{b}})$ is a cyclic extension of degree 4 over \mathbb{Q} . (A field extension E/F is said to be a cyclic extension if it is a Galois extension and the Galois group is cyclic.)
- 5. Let f(x) be an irreducible polynomial of degree 4 over \mathbb{Q} and $\alpha_1, \ldots, \alpha_4$ be the zeros of f(x) in $\overline{\mathbb{Q}}$. Let

$$\beta_1 = \alpha_1 \alpha_2 + \alpha_3 \alpha_4$$
, $\beta_2 = \alpha_1 \alpha_3 + \alpha_2 \alpha_4$, $\beta_3 = \alpha_1 \alpha_4 + \alpha_2 \alpha_3$.

- (a) (10 points.) Prove that $g(x) = (x \beta_1)(x \beta_2)(x \beta_3)$ is a polynomial in $\mathbb{Q}[x]$. That is, show that $\beta_1 + \beta_2 + \beta_3$, $\beta_1\beta_2 + \beta_2\beta_3 + \beta_3\beta_1$, and $\beta_1\beta_2\beta_3$ are all in \mathbb{Q} .
- (b) (10 points.) Let E be the splitting field of f(x). Prove that $Gal(E/\mathbb{Q})$ is isomorphic to S_4 or A_4 if and only if g(x) is irreducible over \mathbb{Q} .