國立臺灣大學 112 學年度碩士班招生考試試題 題號: 347

科目:資料結構與演算法

題號: 347

頁之第

節次: 1

本試卷有 14 題選擇題(題號 1-14), 第 4,5,7 題為單選題, 其他選擇題為複選 題。單選題該題答對得 5 分,答錯倒扣 1 分,未答者得 0 分。複選題每個 選項單獨計分,選項答對者得1分,選項答錯者倒扣0.5分,另若該題整 題未作答者,整題得0分。選擇題請於答案卡上作答。另有2題非選擇題 (題號 15-16),請於試卷本上作答。

Multiple Choice Problems (70 points, 5 points for each problem)

- 1. Assuming we have n data points. Among the variant characteristics of the data points, please select the correct descriptions.
 - (A) If the worst-case running time is the most important, merge sort can be a good choice with $O(n \log n)$ time.
 - (B) If the input happens to be sorted already, bubble sort can be a best choice with O(n) time.
 - (C) If the input array is in random order and the average sorting time is most important, quick sort can be a good choice with $O(n \log n)$ time.
 - (D) If the exchanges of the items in the array are very expensive, selection sort will incur the least "swaps" or "moves".
 - (E) If the input array consists of integers in the range $1...n^k$, radix sort with radix n with $O(k \log n)$ time.
- B+ tree is an extension of B tree. The major differences from B tree are (1) all leaf nodes are linked together in a doubly-linked list, and (2) data points are stored on the leaf nodes only; internal nodes only hold keys and act as routers to the correct leaf node; the left child is smaller than the key and the right child is larger or equal than that. Please find any/all violations of a B+ tree structure in the following diagram. Assume the tree node can at most contain 4 data points (keys).

題號: 347 國立臺灣大學 112 學年度碩士班招生考試試題

科目:資料結構與演算法

題號: 347

共 2 頁之第 2. 頁

3. Please find the following table for the characters and their corresponding occurring probabilities. Please design a Huffman encoding tree and select the correct descriptions.

Symbol (X)	A	В	С	D	E	F	G
Prob (X)	0.15	0.06	0.24	0.21	0.09	0.21	0.03

- (A) The codeword length for symbol C is 3
- (B) The codeword length for symbol G is 5
- (C) The codeword length for symbol E is 5
- (D) The codeword length for symbol A is 4
- (E) none of above is correct
- 4. (單選) We now use several algorithms to traverse a binary tree. Assuming there are a total number of N nodes, how many of the following statements about the worst-case space complexity are TRUE?
 - Using DFS to traverse a balanced binary tree takes O(N).
 - Using DFS to traverse a binary tree takes O(N).
 - Using BFS to traverse a balanced binary tree takes O(N).
 - Using BFS to traverse a binary tree takes O(N).

(A) 0

(B) 1

(C)2

(D) 3

(E) 4

5. (單選) In a traditional merge sort, two sorted sub-arrays are combined to form a single, fully sorted array. This is referred to as a 2-way merge. The problem at hand is to extend this concept by merging N sorted arrays of integers, where N and M are given integers representing the number of arrays and the number of integers in each array, respectively. Please choose the correct worst-case time complexity of this N-way merge.

(A) $O(N \log M)$

(B) $O(NM \log M)$

(C) $O(N^2 \log M)$

(D) $O(NM \log N)$

(E)none of the above is correct.

- 6. The following is a binary tree and the alphabet on the node is simply the "name" (instead of value) of the node. Please select the correct statements from the following:
 - (A) The successor of node B is E.
 - (B) The successor of node A is C.
 - (C) The tree is not a AVL tree.
 - (D) If we remove node J, the result is an AVL tree.
 - (E) If we remove node H, the result is an AVL tree.

題號: 347 國立臺灣大學 112 學年度碩士班招生考試試題

科目:資料結構與演算法

題號: 347 共 ク 百之第 ろ 百

節次: 1

7. (單選) Given a list of binary trees $T = \{t_1, t_2, ..., t_7\}$ where each node is 0 or 1 shown as below, we would like to insert these trees into a **linear-probing hash table** of length N = 11. The hash function $f(t) = g(h(t)) \mod N$, where h(t) is the binary sequence obtained from *in-order* traversal of tree t and $g(\cdot)$ converts a binary sequence to a decimal number. For instance, g("11111111") = 127. Here's the question: how many collisions occur during the insertion process?

- 8. **Postfix advantages:** What is/are the advantage(s) of using postfix notation for math expressions?
 - (A) No need to use parentheses
 - (B) No need to consider precedence of operators
 - (C) Easier for human to read
 - (D) Easier for computers to evaluate
 - (E) More concise when compared with prefix notation

題號: 347 國立臺灣大學 112 學年度碩士班招生考試試題

科目:資料結構與演算法

超號・341 共 ク 頁之第 4 頁

打日・貝竹紀傳典演兵/ ダム・ 1

9. **DFS advantages:** To find a feasible solution to the eight-queen problem, what is/are the reason(s) that we prefer to use DFS (depth-first search) instead of BFS (breadth-

(A) DFS is more memory efficient.

first search)?

- (B) DFS can be implemented using a stack.
- (C) DFS usually reaches the terminal states of "good" or "bad" faster.
- (D) DFS is conceptually simpler than BFS.
- (E) BFS cannot be implemented using a stack.
- 10. **Heap applications:** Which one(s) of the following applications may involve the use of heaps to increase time efficiency?
 - (A) Find the k largest numbers from a given stream of numbers.
 - (B) Given a stream of numbers coming one after another, calculate the median of the currently received set of numbers.
 - (C) Compute the page rank of a given set of web pages
 - (D) Detect appropriate "buy" and "sell" requests to create transactions in stock market
 - (E) Identify the next timing for collisions in event-driven simulation for molecular dynamics
- 11. Properties of dynamic programming (DP): Which of the following statements is/are correct about DP?
 - (A) Any DP problem can be visualized as the optimal path finding problem.
 - (B) Once a DP problem is solved, all the related sub-problems are also solved.
 - (C) Once a DP problem is solved, it is straightforward to obtain the second-best solution.
 - (D) The optimal solution of a DP problem can be obtained using optimal solutions of its sub-problems.
 - (E) A DP problem has overlapping sub-problems which are reused several times when solving the original problem.
- 12. Properties of shortest path problem: Which of the following statements, is/are correct?
 - (A) Dijkstra's algorithm can be applied to any directed graph with no negative cycle.
 - (B) The heap data structure is likely to be used in Dijkstra's algorithm.
 - (C) Floyd-Warshall algorithm can be applied to any directed graph with negative weights.
 - (D) Floyd-Warshall algorithm is based on the concept of dynamic programming.
 - (E) Every shortest path in a weighted directed graph G will not change if an extra weight is added on every edge of G

題號: 347 國立臺灣大學 112 學年度碩士班招生考試試題

科目:資料結構與演算法

超號・341

次:1 共 2 頁之第 5 頁

13. Properties of min. spanning tree (MST): Let T be a MST of a weighted graph G with at least 3 vertices. Which of the following statements is/are correct?

- (A) Given an edge e in G but not in T, we can form a cycle by putting e to T. Then e has the largest weight among edges in C.
- (B) If we partition G into two subsets, and let e be the smallest-weight edge across the partition. Then e belongs to some MST in G.
- (C) The edge with the smallest weight in G must belong to some MST of G.
- (D) The edge with the second smallest weight in G must belong to some MST of G.
- (E) The edge with the third smallest weight in G must belong to some MST of G.
- 14. Prefix, infix, and postfix: Which of the following statements is/are correct?
 - (A) We can use a stack to convert an infix to postfix expression.
 - (B) We can use a stack to convert a postfix to an infix expression.
 - (C) We can derive a binary tree from its infix and prefix notations.
 - (D) We can derive a binary tree from its infix and postfix notations.
 - (E) We can derive a binary tree from its prefix and postfix notations.

Short Answer Problems (30 points)

15. **(21 points)** Given k singly linked lists, each of which has n nodes. The numbers in the nodes of the i-th list are given by $a_{i,1}, a_{i,2}, \ldots, a_{i,n}$, as shown in the figure below. Each of the k lists has the numbers sorted in non-decreasing order, i.e., $a_{i,1} \le a_{i,2} \le \cdots \le a_{i,n}$, where i is the index of the list. Professor Q asks the students to develop an algorithm to merge these k lists into one singly linked list sorted in non-decreasing order. Three students have come up with different algorithms, which are given below in pseudo code.

國立臺灣大學 112 學年度碩士班招生考試試題

科目:資料結構與演算法

頁之第

Student A:

L1. Create an empty singly linked list S to collect the result.

L2. DO

Iterate over the numbers in the head nodes of the k lists, and find L3. the node with the smallest number, denoted as node M.

L4. Remove node M from the original list, and insert it into the result list S from the tail.

L5. UNTIL all original k lists are empty

Return the result list S, which contains all nodes from the original kL6. lists and sorted in non-decreasing order.

Student B:

- Create an empty singly linked list S to collect the result. L1.
- L2. Create an empty min heap H.
- L3. Remove the k head nodes from the k lists and insert them into H. Each node in H also contains the index number i of the list where it is from.
- L4. DO
- Remove the min node M from the heap. Insert this node into $\mathcal S$ from L5. the tail. Take note of the index number stored in M, denoted as m.
- If list m is not empty, remove the head node from list m and insert L6. it into H.
- L7. WHILE H is not empty
- L8. Return the result list S, which contains all nodes from the original klists and sorted in non-decreasing order.

Student C:

Call the recursive divide-and-conquer function MergeTwoGroupLists (k sorted linked lists). The return value of the function is a list containing all nodes from the original klists and sorted in non-decreasing order.

- L1. Function MergeTwoGroupLists (m sorted linked lists)
- If m==1 then return the only list from the input. L2.
- Divide the input m lists into two groups of lists, with $\left[\frac{m}{2}\right]$ and $\left|\frac{m}{2}\right|$ L3. lists, respectively.
- L4. Recursively call MergeTwoGroupLists for each of these two groups of lists, merging the first group of the lists into one sorted list, $\mathbf{S}_{\mathbf{1}}$, and the second group of the lists into one sorted list, S_2 .
- L5. Merge the two sorted lists S_1 and S_2 into one sorted list S.
- L6. Return S.

For each of these three algorithms, analyze and give their asymptotic worst-case running times with the big-O notation and in terms of k and n.

題號: 347 國立臺灣大學 112 學年度碩士班招生考試試題

科目:資料結構與演算法

節次:

題號: 347

共 ク 頁之第 ク 頁

Note:

• Lower-order terms and constant factors (excluding k and n) should be removed in the big-0 notation in the answer.

- The bound in the answer needs to be tight.
- Only the final result will be graded and only fully correct answers will be given points. Please clearly mark your final result in the answer sheet.
- 16. **(9 points)** The pseudo code function to compute the prefix function in the Knuth-Morris-Pratt (KMP) string matching algorithm is given below. Given a pattern string P[1..m], the prefix function for this pattern P is the function $\pi:\{1,2,...,m\} \rightarrow \{0,1,...,m-1\}$ such that $\pi[q]$ is the length of the longest prefix of P that is a proper suffix of P_q , where P_q denotes the q-character prefix of the string P. For pattern string P-ABACABACABACABAD, how many times is **line 7** executed? (Note: only the final answer will be graded and only fully correct answer will be given points)

COMPUTE-PREFIX-FUNCTION(P)

```
1 m = P.length
 2 let \pi[1..m] be a new array
    \pi[1]=0
    k = 0
 5
    for q=2 to m
         while k > 0 and P[k+1] \neq P[q]
 6
 7
              k = \pi[k]
 8
         \mathbf{if}\ P[k+1] == P[q]
 9
              k = k + 1
10
         \pi[q] = k
11 return \pi
```