題號: 263

國立臺灣大學 109 學年度碩士班招生考試試題

科目: 環境化學及環境微生物學

題號:263

節次: 7

共1頁之第1頁

1. What are the common microbial indicators used for estimating "possible fecal contamination" and "disinfection efficiency" in "drinking" water supply? Why different indicators are used? (20 pts)

- 2. What is the most common electron acceptor for microbial aerobic respiration? Why? Please list 3 other possible electron acceptors for groundwater bioremediation, if it was contaminated with organic solvent. (20 pts)
- 3. Which section of ribosomal RNA gene is the most common one used for bacterial taxonomy identification? Why? (10 pts)
- 4. Explain the chemical significance of (i) Acid dissociation constant (pK_a) and (b) Octanol-water partition coefficient (K_{OW}) for the fate of pollutants in the environment. (10 pts)
- 5. A ground water has the following analysis. Calculate the total hardness, carbonate hardness, noncarbonated hardness, alkalinity, and construct a bar chart of the constituents. All expressed as mg/L as CaCO₃. (10 points)

Ca ²⁺	75 mg/L
Mg ²⁺	38 mg/L
Na ⁺	20 mg/L
K ⁺	7 mg/L
HCO₃⁻	200 mg/L
SO ₄ ²⁻	109 mg/L
Cl ⁻	11 mg/L

- 6. A closed container has 1.0×10^{-3} M CH₃OOH. You may ignore activity corrections. Calculate the pH and speciation of this solution. (CH₃COOH: pKa = 4.76) (15 points)
- 7. For a solution containing 1.0 \times 10⁻⁸ M total dissolved iron (Fe(III)). What fraction of the Fe precipitates in a pH 7 water? (15 points)

Thermodynamic information:

$$Fe(OH)_{3(s)} + 3H^+ = Fe^{3+} + 3H_2O$$

$$*K_{s0}=10^{-3.2}$$

$$Fe^{3+} + 3H_2O = FeOH^{2+} + H^+$$

$$*\beta_1 = 10^{-2.2}$$

$$Fe^{3+} + 2H_2O = Fe(OH)_2^+ + 2H^+$$

$$*\beta_2 = 10^{-5.7}$$

$$Fe^{3+} + 4H_2O = Fe(OH)_4^- + 4H^+$$

$$*\beta_4 = 10^{-21.6}$$