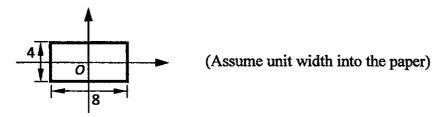
226

國立臺灣大學 109 學年度碩士班招生考試試題

科目: 流體力學(D)

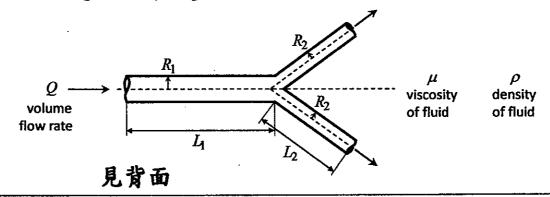

趙號: 226 共2頁之第1頁

節次:

- 1.(5% for each question, total 50%) Answer the following questions. (Derivations are not required)
 - (a) The following table lists the measurements of the deformation angle θ of a fluid element with time t under the action of a constant shearing stress. Is the fluid Newtonian or non-Newtonian?

θ (°)	1.2	4.8	10.8	19.2
t (sec)	1	2	3	4

(b) A 2-D incompressible flow has velocity components in polar coordinates (r,θ) : $v_r = A/r$, $v_\theta = 0$ where A is a constant. Find the net volume flow rate Q across the rectangular boundary as shown below.



- (c) If the velocity of an incompressible flow field is found to be proportional to the pressure gradient of the flow: $\underline{v} = -C\nabla p$ where C is a constant, then what is the value of $\nabla^2 p$?
- (d) Following the above problem, is the flow rotational or irrotational?
- (e) Let \underline{y} denote the velocity field of a flow and ρ the density of the fluid. Which of the followings is the correct expression for the momentum flux across an elemental area dA (with unit normal vector \underline{n}) in the flow field?
 - (A) $\rho |v|^2 dA$
- (B) $\rho \underline{v} \cdot \underline{n} dA$ (C) $\rho |\underline{v}| (\underline{v} \cdot \underline{n}) dA$ (D) $\rho \underline{v} (\underline{v} \cdot \underline{n}) dA$ (E) $\rho |\underline{v}|^2 \underline{n} dA$
- (f) The inviscid flow distribution at the outer edge of a 2-D incompressible boundary layer has the form $U(x) = Cx^{\alpha}$. Find the value of α under which the pressure gradient inside the boundary-layer is a constant.
- (g) The drag force F experienced by a cylinder of diameter D in a uniform stream of flow speed V and density ρ is given by:

$$\frac{F}{\rho V^2 D} = f(Re)$$
 where Re is the Reynolds number.

If it is observed from experiments that the drag force F is linearly proportional to the free stream speed V, then what is the general expression for the function f?

- (h) How does fluid turbulence generally affect (increase or reduce) the friction drag on a solid body?
- (i) A fluid of density ρ and viscosity μ flows through a pipe of diameter D and length L with an averaged flow speed V. If the pressure drop Δp between the inlet and outlet of the pipe is found to be $\Delta p \approx CL\rho^{3/4}\mu^{1/4}D^{-5/4}V^{\alpha}$ where C is a dimensionless constant, then what is the value of α ?
- (j) A branching circular pipe system is shown as below. Assume Poiseuille solution $\Delta p = \frac{8\mu QL}{\pi R^4}$ for the circular pipe flow applies to each segment of the system, what is the expression for the total friction head loss h_f of this pipe flow (in terms of the relevant parameters specified in the figure below)? Neglect all minor losses.

題號: 226

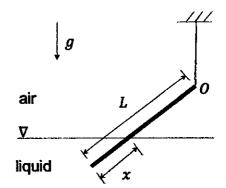
國立臺灣大學 109 學年度碩士班招生考試試題

科目: 流體力學(D)

節次: 7

共2页之第2页

惠號: 226

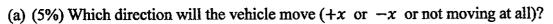

2. (15%) Consider a general control volume in fluids. The fluid has a density ρ and a velocity field \underline{u} . The control volume V_{CV} and the corresponding control surface A_{cs} are time-varying quantities. The velocity of the control surface is \underline{U}_{cs} and the unit normal vector of the control surface is \hat{n} . Derive the control volume form of the mass conservation

$$\frac{d}{dt}\int_{V_{CV}}\rho\ dV + \oint_{A_{CS}}\rho(\underline{u} - \underline{U}_{CS}) \cdot \hat{n}\ dA = 0$$

from the continuity equation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho \underline{u} \right) = 0.$$

- 3. (20%) As shown in the following figure, a thin cylinder bar with a density ρ_s is hanged with a string at the end O and partially submerged in a liquid fluid with a density ρ_f . The length of the bar is L and the length of the bar submerged in the fluid is x. Let $\rho_s < \rho_f$ so that the bar is floating on the liquid. The magnitude of the gravitational acceleration is g.
 - (a) (5%) Determine the ratio $\frac{x}{L}$ in terms of the density ratio $\frac{\rho_S}{\rho_f}$.
 - (b) (15%) If the bar is perturbed and oscillates about O with a frequency f, perform a dimensional analysis (8%) to determine how will the frequency f behave with respect to the bar length L at a fixed density ratio $\frac{\rho_s}{\rho_f}$ (7%).



4. (15%) An inventor proposes to propel a small, low-speed underwater vehicle with a device that successively closes and opens two rigid flaps as shown above. The sketch shows a scale model being tested in a large, deep pool containing stationary water (density ρ). In one cycle, the system starts at its maximum open angle θ_1 , closes at a uniform angular speed

$$\frac{d\theta}{dt} = -\omega$$

until it reaches a smaller angle θ_2 , and then opens at the same angular speed ω until it returns to its original angle.

Note that, unlike the depiction in the sketch, $w \ll L$ and $\theta \ll 1$.

