國立臺灣大學 110 學年度碩士班招生考試試題

科目: 電磁學及電磁波

題號:406

節次: 7

共 6 頁之第 1 頁

以下均為單選題,請將答案寫在電腦閱卷答案卡上

1. Which of the following statements is not correct?

(A)
$$\nabla r = \hat{r}$$
 (B) $\nabla \times \frac{\hat{r}}{r^2} = 0$ (C) $\nabla \cdot \frac{\hat{r}}{r^2} = 0$ (D) $\nabla^2 r = \frac{2}{r}$

- 2. Which of the following statements is not correct?
 - (A) A curl-less vector field can be expressed as the gradient of a scalar field.
 - (B) A divergence-less vector field can be expressed as the curl of a vector field.
 - (C) A curl-less and divergence-less vector field is a constant vector field.
 - (D) A smooth and rapidly decaying vector field can be expressed as the sum of a curl-less vector field and a divergence-less vector field.
- 3. A charged particle at rest is released in a region of uniform electric field in the y direction and uniform magnetic field in the z direction. Which of the following statements is not correct?
 - (A) The motion of the particle in the y direction is periodic.
 - (B) In average, the particle moves with a constant speed in the x direction.
 - (C) The kinetic energy of the particle increases with time.
 - (D) The magnetic field does no work on the particle.
- 4. For an ideal electric quadruple, what is the relation between the electric field strength E and the distance r in the far field?
 - (A) $E \propto r^{-1}$ (B) $E \propto r^{-2}$ (C) $E \propto r^{-3}$ (D) $E \propto r^{-4}$
- 5. Consider two long parallel wires of radius a, separated by a distance d. If $d \square a$, find the capacitance per unit length.

(A)
$$\frac{\varepsilon_0 \pi}{\ln d - \ln a}$$
 (B) $\frac{2\varepsilon_0 \pi}{\ln d - \ln a}$ (C) $\frac{\varepsilon_0 \pi}{\ln d + \ln a}$ (D) $\frac{2\varepsilon_0 \pi}{\ln d + \ln a}$

- 6. In the static case, consider an interface between the free space and a perfect conductor with some charges on the surface. Which of the following statements is not correct?
 - (A) The electric field in the free space near the surface is proportional to the surface charge density.
 - (B) There is no electric field in the conductor.
 - (C) The surface charge would experience no electric force.
 - (D) The electric potential is the same in the conductor, even near sharp edges.
- 7. An uncharged metal sphere is placed in an otherwise uniform electric field $E_0\hat{z}$. Find the induced surface charge density.
 - (A) Zero everywhere on the sphere. (B) $\varepsilon_0 E_0 \cos \theta$ (C) $2\varepsilon_0 E_0 \cos \theta$ (D) $3\varepsilon_0 E_0 \cos \theta$
- 8. What does ρ in the Gauss's law $\nabla \cdot \vec{D} = \rho$ mean?
 - (A) The free volume charge density.
 - (B) The free surface charge density.
 - (C) The sum of the polarization volume charge density and the free volume charge density.
 - (D) The sum of all surface charge density and volume charge density.
- 9. What does \overline{J} in the Ampere's law $\nabla \times \overline{H} = \overline{J} + \frac{\partial \overline{D}}{\partial t}$ mean?
 - (A) The free volume current density.
 - (B) The free surface current density.
 - (C) The sum of the polarization current density, the magnetization current density, and the free current density.
 - (D) The sum of all surface current density and volume current density.
- 10. Consider a uniformly polarized dielectric sphere where the polarization inside the sphere is \bar{P} . Find the displacement field \bar{D} inside the sphere.

(A) 0 (B)
$$\frac{2}{3}\bar{P}$$
 (C) $-\frac{1}{3}\bar{P}$ (D) \bar{P}

11. A short solenoid (length l, radius a, n_l turns per unit length) lies on the axis of a very one solenoid (length l, radius b, n_2 turns per unit length), where a < b. What is the total magnetic flux through the long solenoid if a steady current l flows in the short

國立臺灣大學 110 學年度碩士班招生考試試題

科目: 電磁學及電磁波

題號:406

節次:

共 6 頁之第 2 頁

solenoid?

- (A) $\mu_0 \pi a^2 n_1 n_2 l l$ (B) $\mu_0 \pi b^2 n_1 n_2 l l$ (C) $\mu_0 \pi a^2 n_1^2 l l$ (D) $\mu_0 \pi a b n_1 n_2 l l$
- 12. Which of the following statements is not correct in general?
 - (A) Diamagnetism could be related to the orbital motion of electrons.
 - (B) Paramagnetism could be related to the electronic spin.
 - (C) Ferromagnetism becomes obvious above the Curie temperature.
 - (D) Antiferromagnetism vanishes above the Neel temperature.
- 13. Consider a sheet current source $-J_{s0}\cos(\omega t)\hat{x}$ at z=0. The medium on either side of the sheet is free space. Which of the

following statements for the region z > 0 is not correct?

- (A) There will be a wave propagating in the +z direction.
- (B) The electric field and magnetic field are in phase.
- (C) The instantaneous power flow out of an arbitrary closed surface is zero.
- (D) The average power flow is half of the peak power flow.
- 14. Consider a sheet current source $-J_{s0}\cos(\omega t)\hat{x}$ at z=0. The medium on either side of the sheet is perfect dielectric. Assume

the dielectric constant is higher in the z>0 region. Which of the following statements is not correct?

- (A) The power flux is higher in the z > 0 region.
- (B) The power flux is higher in the z < 0 region.
- (C) The power flux is the same in both regions
- (D) There is no power flux in both regions.
- 15. Assume the relation $\overline{D} = \varepsilon \overline{E}$ holds in a medium, where ε is a constant. What do we not imply for that medium?
 - (A) The medium is linear.
 - (B) The medium is isotropic.
 - (C) The medium is nondispersive.
 - (D) The medium is lossless.
- 16. Assume two electromagnetic waves (frequency f_A and f_B) enters a nonlinear material whose polarization field includes a term that is proportional to the square of the electric field. Which of the following frequencies could one possibly observe at the output of the nonlinear material?
 - (A) f_A+f_B (B) $2f_A$ (C) $2f_B$ (D) All of the above.
- 17. Consider a situation that region 1 (z<0) is free space and region 2 (z>0) is an anisotropic lossless nonmagnetic material described by the following relationship.

$$\begin{bmatrix} D_x \\ D_y \\ D_z \end{bmatrix} = \varepsilon_0 \begin{bmatrix} 3 & -1 & 0 \\ -1 & 3 & 0 \\ 0 & 0 & 6 \end{bmatrix} \begin{bmatrix} E_x \\ E_y \\ E_z \end{bmatrix}$$

For a uniform plane wave with the electric field $E_0 \cos \left[\omega (t - \sqrt{\varepsilon_0 \mu_0} z)\right] \hat{x}$ incident on the interface z = 0 form region 1. What is the electric field of the reflected wave?

(A)
$$E_0 \cos \left[\omega (t + \sqrt{\varepsilon_0 \mu_0} z)\right] \left(\frac{1 - \sqrt{3}}{1 + \sqrt{3}} \hat{x}\right)$$

(B)
$$E_0 \cos \left[\omega (t + \sqrt{\varepsilon_0 \mu_0} z)\right] \left(\frac{2\sqrt{2} - 3}{2}\hat{x} + \frac{2\sqrt{2} - 5}{2}\hat{y}\right)$$

國立臺灣大學 110 學年度碩士班招生考試試題

科目: 電磁學及電磁波

題號:406

節次: 7

共 6 頁之第 3 頁

(C)
$$E_0 \cos \left[\omega (t + \sqrt{\varepsilon_0 \mu_0} z) \right] \left(\frac{3\sqrt{2} - 5}{3} \hat{x} + \frac{3\sqrt{2} - 4}{3} \hat{y} \right)$$

- (D) None of the above.
- 18. Following the previous question, what is the electric field of the transmitted wave?

(A)
$$E_0 \cos \left[\omega (t + \sqrt{3\varepsilon_0 \mu_0} z)\right] \left(\frac{2}{1 + \sqrt{3}} \hat{x}\right)$$

(B)
$$(\sqrt{2}-1)(\hat{x}+\hat{y})E_0\cos\left[\omega(t-\sqrt{2\varepsilon_0\mu_0}z)\right]+\frac{1}{3}(\hat{x}-\hat{y})E_0\cos\left[\omega(t-2\sqrt{\varepsilon_0\mu_0}z)\right]$$

(C)
$$E_0 \cos \left[\omega \left(t - \sqrt{2\varepsilon_0 \mu_0} z\right)\right] \left[\left(\sqrt{2} - \frac{2}{3}\right)\hat{x} + \left(\sqrt{2} - \frac{4}{3}\right)\hat{y}\right]$$

- (D) None of the above.
- 19. A randomly polarized electromagnetic wave in free space is incident on a lossless medium with a dielectric constant of 3. At what incident angle does the reflected wave become linearly polarized?
 - (A) 0 degree (B) 30 degrees (C) 60 degrees (D) None
- 20. Assume the electron density is 10⁶ cm⁻³ in a certain layer of ionsphere. Which of the following frequency of electromagnetic waves that could pass through that layer?
 - (A) 12 MHz (B) 8 MHz (C) 4 MHz (D) 1 MHz
- 21. If $\vec{E}(z,t) = \hat{y}9\cos(6\pi \times 10^7 t \frac{1}{5}\pi z)$ V/m. Find $\vec{H}(z,t)$.

(A)
$$\vec{H}(z,t) = -\hat{x}90\cos(6\pi \times 10^7 t - \frac{1}{5}\pi z)$$
 mA/m

(B)
$$\overline{H}(z,t) = \hat{x}50\cos(6\pi \times 10^7 t - \frac{1}{5}\pi z)$$
 mA/m

(C)
$$\overline{H}(z,t) = -\hat{x}24\cos(6\pi \times 10^7 t - \frac{1}{5}\pi z)$$
 mA/m

(D)
$$\overline{H}(z,t) = -\hat{x}44\cos(6\pi \times 10^7 t - \frac{1}{5}\pi z)$$
 mA/m

22. In an air-filled parallel-plate waveguide with dimension a = 4 cm, according to the expression of electric field distribution,

$$E = E_0(\sin 25\pi x + 3\sin 50\pi x)\sin(8\times10^9\pi t)$$

What is the value of phase constant β_z of propagation wave?

- (A) 7.5 (B) 23.5 (C) 29.2 (D) 74 rad/m
- 23. Consider a parallel-plate waveguide (plates at y=0 and y=b planes), with wave propagating in the +z direction. For the lowest-order TM mode, if the instantaneous field expression for the z-component of the electric field at (x, y, z) = (x, b/4, 0) is

$$E_z(t) = E_0 \cos wt$$
, what is the corresponding expression for $E_z(t)$ at $(x, y, z) = (x, b/2, d)$?

(A)
$$2E_0 \cos(wt - \beta d)$$
 (B) $\sqrt{2}E_0 \cos(wt - \beta d)$ (C) $2E_0 \sin(wt - \beta d)$ (D) $\sqrt{2}E_0 \sin(wt - \beta d)$

- 24. Find the spacing d for a parallel-plate waveguide having a dielectric of $\varepsilon = 4\varepsilon_0$ and $\mu = \mu_0$ such that 5 GHz is the cutoff frequency of the dominant mode.
 - (A) 1 (B) 1.5 (C) 2 (D) 2.5 cm
- 25. A wave in air is incident upon a soil surface at $\theta_i = 40^\circ$. If soil has $\varepsilon_r = 2.2$ and $\mu_r = 1$, determine Γ_L and τ_L .

見背面

國立臺灣大學 110 學年度碩士班招生考試試題

科目: 電磁學及電磁波

題號:406

節次: 7

共 6 頁之第 4 頁

(A)
$$\Gamma_{\perp} = -0.48, \tau_{\perp} = 0.52$$
 (B) $\Gamma_{\perp} = -0.27, \tau_{\perp} = 0.52$ (C) $\Gamma_{\perp} = -0.27, \tau_{\perp} = 0.73$ (D) $\Gamma_{\perp} = -0.48, \tau_{\perp} = 0.73$

- 26. The magnetic field in a given dielectric medium is given by $\overline{H} = y6\cos(2z)\sin(2\times10^7t 0.1x)$ (A/m), where x and z are in meters. Determine the phase velocity of the electromagnetic wave.
 - (A) 2×10^8 (m/s)
 - (B) 3×10^8 (m/s)
 - (C) 5×10^8 (m/s)
 - (D) 1.5×10^8 (m/s)
- 27. The magnetic field associated with a uniform plane wave propagating in the +z-direction in free space is given by

 $\overline{H} = H_0 \cos(6\pi \times 10^7 t - 0.2\pi z)y$ (A/m). Find the instantaneous power flow across a surface of area 1m² in the z=0 plane at t=(1/8) μ s.

(A)0 W (B)1 W (C)1.5 W (D)3 W

- 28. The electric field of a plane wave is given by $\overline{E}(z,t) = x 3 \cos(\omega t kz) + y 4 \cos(\omega t kz) (V/m)$. Determine the polarization state of the corresponding electromagnetic wave.
 - (A)Linear Polarization
 - (B) Right-Hand Circular Polarization
 - (C) Left-Hand Circular Polarization
 - (D) Elliptical Polarization
- 29. The general expression of the voltage on a lossless transmission line in the sinusoidal steady state is

$$V(z,t) = A\cos\left[\omega\left(t - \frac{z}{v_p}\right) + \theta\right] + B\cos\left[\omega\left(t + \frac{z}{v_p}\right) + \phi\right].$$

Which one of the following statements is wrong?

(A) The current can be expressed as

$$I(z,t) = \frac{1}{Z_0} \left\{ A \cos \left[\omega \left(t - \frac{z}{v_p} \right) + \theta \right] + B \cos \left[\omega \left(t + \frac{z}{v_p} \right) + \phi \right] \right\}$$

- , where Z_0 is the characteristic impedance of the transmission line.
- (B) If B is zero, there is no standing wave on the transmission line.
- (C) The first term and the second term represent the waves going in the +z and -z directions, respectively.
- (D) ω/v_p is the propagation constant.
- β0. A 50-Ω transmission line is terminated by a load. Which one of the following statements is wrong?
 - (A) If the load impedance is 0 \Omega and the electrical length of the transmission line is 90 degree, the input impedance is ∞.
 - (B) If the load impedance is 100Ω and the electrical length of the transmission line is 90 degree, the input impedance is 20Ω .
 - (C) If the load impedance is 200Ω and the electrical length of the transmission line is 180 degree, the input impedance is 200Ω .
 - (D) If the load impedance is 30Ω and the electrical length of the transmission line is 360 degree, the input impedance is 30Ω .
- 31. For the system impedance of Z_0 , what is the component which can match the impedance at point A to point B along the constant VSWR circle as shown in Fig. 1?
 - (A) A series capacitor.

國立臺灣大學 110 學年度碩士班招生考試試題

科目: 電磁學及電磁波

題號:406

共 6 頁之第 5 頁

節次: 7

- (B) A series resistor.
- (C) A series transmission line with characteristic impedance of Z_0 .
- (D) A shunt short-circuited transmission line with characteristic impedance of Z₀.
- 32. Which one cannot allow TEM wave propagation?
 - (A) Rectangular metal waveguide.
 - (B) Coaxial cable.
 - (C) Parallel-plate waveguide.
 - (D) Stripline.

Fig. 1

Fig. 2

Fig. 3

For Probs. 33-36, consider a step pulse incident to a transmission line with terminating load, as shown in Fig. 2.

- 33. If the load is a pure inductor L, which statement is WRONG?
 - (A) A reflected wave is resulted since the boundary condition at load is violated.
 - (B) The inductor is initially open, hence the voltage at the load will be Vo at $t=T^+$.
 - (C) The reflected wave will be of positive voltage for t > T.
 - (D) The voltage at the load will be zero as t tends to infinity.
- 34. If the load is a series resistor R = Zo and inductor L, which statement is WRONG?
 - (A) The current at the load should be continuous versus t, due to the presence of L.
 - (B) The inductor is initially open, hence the voltage at the load will be Vo at $t=T^+$.
 - (C) The reflected wave will be of positive voltage for t > T.
 - (D) The voltage at the load will be zero as t tends to infinity.
- 35. If the load is a pure capacitor C, which statement is WRONG?
 - (A) The voltage at the load should be continuous versus t, due to the presence of C.
 - (B) The capacitor is initially short, hence the voltage at the load will be 0 at $t=T^+$.
 - (C) The reflected wave will be of positive voltage for t much larger than T.
 - (D) The voltage at the load will be zero as t tends to infinity.
- 36. If the load is a shunt connection of capacitor C and resistor R = Zo, which statement is WRONG?
 - (A) The voltage at the load should be continuous versus t, due to the presence of C.
 - (B) The capacitor is initially short, hence the voltage at the load will be zero at t=T.
 - (C) The reflected wave will be of positive voltage for t much larger than T.
 - (D) The voltage at the load will be Vo/2 as t tends to infinity.
- 37. Design a transmission line of characteristic impedance Z_0 and length ℓ , as shown in the Fig. 3, to match a resistive load $R_L = 300$
 - Ω to a lossless transmission line of characteristic impedance $Z_0 = 75 \ \Omega$
 - (A) $Z_1 = 150 \Omega$, $\ell = \lambda/8$
 - (B) $Z_1 = 187.5 \Omega$, $\ell = \lambda/8$
 - (C) $Z_1 = 150 \Omega$, $\ell = \lambda/4$
 - (D) $Z_1 = 187.5 \Omega$, $\ell = \lambda/4$
 - (E) $Z_1 = 150 \Omega$, $\ell = \lambda/2$

見背面

題號: 406 國立臺灣大學 110 學年度碩士班招生考試試題

科目: 電磁學及電磁波

題號:406

共 6 頁之第 6 頁

行日· 电磁字及电磁 節次: 7

 V_{z} Z_{0} Z_{0} Z_{0} Z_{0}

Fig. 4

Fig. 5

Fig. 6

38. A 50- Ω transmission line is connected to a load of impedance $Z_L = 35 + j80\Omega$. Find the position d and length ℓ of a short-circuited stub required for impedance matching, as shown in the Fig. 4.

(A)
$$d = 0.016 \lambda$$
, $\ell = 0.076 \lambda$

(B) $d = 0.143 \,\lambda$, $\ell = 0.174 \,\lambda$

(C)
$$d = 0.266 \lambda$$
, $\ell = 0.076 \lambda$;

(D) $d = 0.393 \lambda$, $\ell = 0.174 \lambda$

- (E) It is impossible to match the load using the single-stub matching circuit.
- 39. Figure 5 shows a power divider of power ratio $P_{L1}/P_{L2} = 1$, where P_{L1} and P_{L2} are the power delivered to the loads R_{L1} and R_{L2} , respectively. The loads have resistance $R_{L1} = 75\Omega$ and $R_{L2} = 300\Omega$, and the characteristic impedance of the transmission line is $Z_0 = 50\Omega$. Find the characteristic impedances Z_1 and Z_2 of the quarter-wavelength transmission lines ($\ell_1 = \ell_1 = \lambda/4$) so that the impedance is matched from the source.
 - (A) $Z_1 = 61.2 \Omega$, $Z_2 = 122.5 \Omega$;
 - (B) $Z_1 = 122.5 \Omega$, $Z_2 = 61.2 \Omega$;
 - (C) $Z_1 = 86.6 \Omega$, $Z_2 = 173.2 \Omega$;
 - (D) $Z_1 = 173.2 \Omega$, $Z_2 = 86.6 \Omega$;
 - (E) It is impossible to match the loads by using the quarter-wavelength transformers.
- 40. A 50- Ω transmission line is connected to a load of impedance $Z_L = 35 + j80 \Omega$. Design a double-stub matching circuit shown in the Fig. 6. Short-circuited stubs are used and the position of the second stub is $d = \lambda/8$.
 - (A) $\ell_A = 0.365 \,\lambda$, $\ell_B = 0.209 \,\lambda$;
- (B) $\ell_A = 0.365 \,\lambda$, $\ell_B = 0.082 \,\lambda$;
- (C) $\ell_A = 0.181 \lambda$, $\ell_B = 0.209 \lambda$;
- (D) $\ell_A = 0.115 \lambda$, $\ell_B = 0.332 \lambda$;
- (E) It is impossible to match the load using the double-stub matching circuit.

試題隨卷繳回