題號: 243 國立臺灣大學 110 學年度碩士班招生考試試題

科目:控制系統(B) 題號: 243 節次: 4 共 Z 頁之第 / 頁

總分 100 分 ※ 注意:請於試卷內之「非選擇題作答區」依序作答,並應註明作答之部份及題號。

- 1. A control system is shown in Fig.1 with $D_1(s) = 1$, $G(s) = \frac{25}{s(s+1)}$.
 - (a) Please solve the percent overshoot and the settling time of system in Fig. 1(a). (10%)
 - (b) The control performance in Fig.1(a) can be improved by the system in Fig.1(b) with

$$D_2(s) = K_1$$
, $H(s) = K_2 s$, $G(s) = \frac{25}{s(s+1)}$. Please design K_1 and K_2 to achieve 25%

overshoot and settling time 0.2 sec. (15%)

Fig.1

- 2. A root locus problem is shown in Fig.2 with plant $G(s) = \frac{1}{(s+1)(s+2)(s+3)(s+4)}$.
 - (a) Sketch the root locus as D(s)=K, including asymptotes and breakaway points. (7%)
 - (b) Find the range of K for stability in (a). (4%)
 - (c) In order to improve the stability, a zero is added in the controller as D(s) = K(s+a) to make the root locus cross the *jw*-axis at $\pm j5.5$. Please find the value of a, and sketch the new root locus. (10%)
 - (d) Find the range of K for stability in (c). (4%)

Fig.2

見背面

題號: 243

節次:

國立臺灣大學 110 學年度碩士班招生考試試題

科目:控制系統(B)

題號: 243

共 乙 頁之第 乙 頁

3. A Nyquist stability problem is shown in Fig.3,

where
$$D(s) = K(s+0.5)$$
, $H(s) = 1$, $G(s) = \frac{1}{s^2(s+1)}$.

- (a) Please derive and sketch the Nyquist plot. (15%.)
- (b) Find the range of K for stability by Nyquist stability criterion. (10%.)

Fig.3

- 4. A servo control system is designed with $G_1(s) = \frac{10}{s+1}$, $G_2(s) = \frac{1}{s-2}$, and the state variable
 - x_1 and x_2 are defined, as shown in Fig.4.
 - (a) Please derive the state space equation of the closed-loop control system. (10%)

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}r$$
$$y = \mathbf{C}\mathbf{x}$$

(b) Please solve the gain K_a and K_b for the closed-loop poles located at $-2 \pm j2$. (15%)

試題隨卷繳回