國立臺灣大學 108 學年度碩士班招生考試試題 題號: 261

科目:熱力學(B)

題號: 261 節次: 6

1. Based on the definition, Helmholtz free energy, F = U - TS.

- a) Please prove dF = -SdT pdV (5%)
- b) Please prove $\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial p}{\partial T}\right)_V$ (5%) [注意:直接用 Maxwell relation 不給分]
- c) Apply b) relationship to prove $\left(\frac{\partial U}{\partial V}\right)_T = T \left(\frac{\partial p}{\partial T}\right)_V p$ (5%)
- d) Apply c) relationship to prove that for van der Waal gas, $(p + \frac{n^2 a}{V^2})(V nb) = nRT$, the heat capacity at constant volume, Cv, is independent of V (volume) (10%)
- 2. Give three examples showing "colligative properties" and provide short explanation $(3\% \times 3)$
- 3. The equilibrium constant for the reaction $A + B \rightleftharpoons 2C$ is reported as 4.0×10^4 . What would equilibrium constant be for the reactions written as
- a) $2C \rightleftharpoons A + B$ (3%) b) $2A + 2B \rightleftharpoons 4C$ (3%) c) $\frac{1}{2}A + \frac{1}{2}B \rightleftharpoons C$ (3%)

What is the value of the equilibrium constant of a reaction for which $\Delta G_r = 0$? (3%)

- 4. Calculate a) the molar Gibbs energy of mixing (5%) and b) the molar entropy of mixing (5%) when N₂ and O₂ are mixed to form air at 25 °C. The mole fractions of N₂ and O₂ are 0.78 and 0.22, respectively.
- 5. For a ligand, L, and a receptor, R, to form a complex [L-R], give $\Delta H = -8.8$ kJ mol⁻¹ and $\Delta S = 121 \text{ J K}^{-1} \text{mol}^{-1}$ at 0 ^{0}C . Calculate the dissociation constant, K_{D} . (10%)
- 6. The Clausius-Clapeyron equation for the vapor pressure is known as $dlnp = \frac{\Delta H_{vap}}{RT^2} dT$. The vapor pressure of mercury at 20 °C is 160 mPa. What is its vapor pressure at 40 °C given that its enthalpy of vaporization is 59.30 kJ mol⁻¹? (10%)
- 7. Please draw phase diagrams to illustrate:
- a) solution has only LCST (3%) b) solution has only UCST (3%)
- c) solution has both LCST and UCST (UCST is higher than LCST) (4%)
- d) solution has both LCST and UCST (UCST is lower than LCST) (4%)
- 8. From the point of view of thermodynamics $(\Delta G, \Delta H, \Delta S)$, a) explain the differences of mixing of small molecules compared to mixing of polymer solutions. (5%) b) Why the solubility of polymer decreases when the molecular weight of the polymer increases? (5%)

試題隨卷繳回