國立臺灣大學 107 學年度碩士班招生考試試題

題號:262

科目: 材料熱力學

題號:

262

節次: 6 共 2 頁之第 1 頁

1. (a) Consider a non-ideal gas that can be described by the equation of state PV = RT(1+BP), where B is a constant independent of temperature T and pressure P. Show that the work done by this non-ideal gas during isothermal expansion from pressure P_1 to P_2 is the same as that achieved by an ideal gas. (10%)

- (b) Show that for a van der Waals gas that can be described by $(P + \frac{a}{V^2})(V b) = RT$, the change in entropy can be expressed as $\Delta S = \int \frac{c_V}{T} dT + R \ln(V b)$. (10%)
- 2. (a) Please briefly describe the second law of thermodynamics. (5%)
- (b) Starting from Boltzmann's equation $S = k \ln \Omega$, show that when two closed systems A and B are in thermal contact, the condition for A to be in thermal equilibrium with B will lead to $T_A = T_B$. (5%)
- (c) Generally speaking, the molar heat capacity of a metallic solid can be expressed as $c_{\nu} = K \left(\frac{T_{\odot}}{\Theta} \right)^3 + \gamma T$ at low temperatures. What are the physical origins of these two temperature-dependent terms? What is Θ ? (5%)
- (d) While dealing with different thermodynamic processes, under what circumstances (conditions) will you use Helmholtz free energy and Gibbs free energy? (5%)
- 3. A piece of copper goes through a reversible isothermal compression process from P=1 atm to 1000 atm at $T=273\,\mathrm{K}$. Assume that the isobaric thermal expansivity α , the isothermal compressibility β , and the mass density ρ are $5\times10^{-5}\,\mathrm{K}^{-1}$, $8\times10^{-12}\,\mathrm{N}^{-1}\mathrm{m}^2$, and $8.9\times10^3\,\mathrm{kg}\,\mathrm{m}^{-3}$, respectively. Please calculate: (a) How much work (per kg) is done on the copper? (10%) (b) How much heat is absorbed or released? (10%)
- 4. Consider a system with N particles, and the system obeys Maxwell-Boltzmann distribution. Show that: (a) The expectation value of number of particles that occupy i^{th} energy level (with energy ε_i) is $n_i = -Nk_BT \left(\frac{\partial \ln Z}{\partial \varepsilon_i}\right)_T$, where $Z = \sum_i e^{-\varepsilon_i/k_BT}$ is the single particle partition function. (10%) (b) The internal energy U (expectation value of

題號: 262 國立臺灣大學 107 學年度碩士班招生考試試題

科目: 材料熱力學

節次: 6 共2頁之第2頁

題號:262

the total energy) of the system can be expressed as $U = -(\partial \ln Z/\partial \beta)_{\nu}$, where $\beta = 1/k_B T$. (5%) (c) The Helmholtz free energy A of the system can be expressed as $A = -\beta^{-1} \ln Z$. (5%)

5. The phase diagram of an alloy that possesses a eutectoid transformation is shown below. (a) Sketch the Gibbs free energy curves for this alloy at T = T'. (10%) (b) Show that the α/γ solvus must enter the α/β two-phase field as indicated by the arrow. (10%)

試題隨卷繳回