國立臺灣大學 106 學年度碩士班招生考試試題

292 科目:統計理論

292 頁之第

- 1. (10 points) State
 - (a) Basu's Theorem
 - (b) Rao-Blackwell Theorem
- 2. (10 points) Let X have a uniform distribution U(0,1), and let the conditional distribution of Y, given that X = x, be $U(0, e^x)$.
 - (a) Calculate the marginal pdf of Y.
 - (b) Compute E(Y|x), the conditional mean of Y, given that X = x.
- 3. (10 points) Let X_1, X_2, \ldots, X_n be iid $f(x|\theta)$ with $E(X_i), E(X_i^2) < \infty$. Let $\hat{\theta}_n$ be an estimator of θ .
 - (a) What is the definition of an unbiased estimator of θ ?
 - (b) Show that

$$E\left[(\hat{\theta}_n - \theta)^2\right] = \left[E(\hat{\theta}_n) - \theta\right]^2 + E\left[\left(\hat{\theta}_n - E(\hat{\theta}_n)\right)^2\right] = c_n + d_n$$

- (c) What conditions on c_n and d_n imply that $\hat{\theta}_n$ is a consistent estimator of θ ? Prove your answer.
- 4. (10 points) Let X_1, \ldots, X_n be a random sample from a population with pdf

$$f(x|\theta) = \theta x^{\theta-1}, \ 0 \le x \le 1, \ 0 < \theta < \infty.$$

- (a) Please find the MLE of θ , and show that its variance converges to 0 as $n \to \infty$.
- (b) Please find the method of moment estimator of θ .
- 5. (a) (5 points) Let X_1, X_2, \ldots, X_n be iid Poisson distribution with mean λ . Please find the UMVUE (uniform minimum variance unbiased estimator) of $(\lambda$ – $1)(\lambda-2).$
 - (b) (5 points) Let X_1, X_2, \ldots, X_n be *iid* Uniform distribution $(0, \theta)$. Please find the UMVUE of θ^{-2} .
- 6. (10 points) Let X be one observation from a distribution with p.d.f. given by

$$f(x) = \frac{e^{(x-\theta)}}{[1 + e^{(x-\theta)}]^2},$$

where $-\infty < x < \infty$; and $-\infty < \theta < \infty$. Find a uniformly most powerful test for testing $H_0: \theta \leq 0$ and $H_1: \theta > 0$.

國立臺灣大學 106 學年度碩士班招生考試試題

科目:統計理論

292

節次: 2

題號: 292 共 ン 頁之第 ン 頁

7. (10 points) Let X_1, X_2, \ldots, X_n be a random sample from a distribution with p.d.f. given by

$$f(x) = \theta x^{\theta - 1},$$

where $0 < x < \infty$; and $\theta > 0$. Find a uniformly most powerful test for testing $H_0: \theta = 6$ against $H_1: \theta < 6$.

- 8. (30 points) Let X_1, X_2, \ldots, X_n and Y_1, Y_2, \ldots, Y_m be independent random samples from the normal distributions $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$, respectively.
 - (a) (10 points) If μ_1 and μ_2 are unknown, show that the likelihood ratio test for testing $H_0: \sigma_1^2 = \sigma_2^2$ against $H_1: \sigma_1^2 \neq \sigma_2^2$ can be based on the following random variable:

$$F = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2 / (n-1)}{\sum_{k=1}^{m} (Y_k - \bar{Y})^2 / (m-1)},$$

where

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$
 and $\bar{Y} = \frac{\sum_{k=1}^{m} Y_k}{m}$.

(b) (10 points) If $\sigma_1^2 = \sigma_2^2$, show that the random variable F in (a) is independent of the random variable T given by

$$T = \frac{\sqrt{\frac{nm}{n+m}}(\bar{X} - \bar{Y})}{\sqrt{\frac{\sum_{i=1}^{n}(X_{i} - \bar{X})^{2} + \sum_{k=1}^{m}(Y_{k} - \bar{Y})^{2}}{n+m-2}}}.$$

(c) (10 points) Show that the likelihood ratio test for testing $H_0: \mu_1 = \mu_2$ and $\sigma_1^2 = \sigma_2^2$ against all alternatives can be based on the following random variable:

$$W = \frac{\left[\sum_{i=1}^{n} (X_i - \bar{X})^2 / n\right]^{\frac{n}{2}} \left[\sum_{k=1}^{m} (Y_k - \bar{Y})^2 / m\right]^{\frac{m}{2}}}{\left\{\left[\sum_{i=1}^{n} (X_i - \hat{\mu})^2 + \sum_{k=1}^{m} (Y_k - \hat{\mu})^2\right] / (n+m)\right\}^{\frac{n+m}{2}}},$$

where $\hat{\mu} = (n\bar{X} + m\bar{Y})/(n+m)$.

試題隨卷繳回