231 科目:動力學(A)

2 頁之第

節次:

*請清楚標示你的答案

- 1. (15%) Referring to Figure 1, a ball of mass m is thrown with an initial velocity of V by a degree of θ at point A on a 30° slope. Suppose the ball strikes the slope at the first time on point B_1 .
 - (a) (5%) What is the achievable maximum height, and the corresponding degree θ ?
 - (b) (5%) Calculate the distance \overline{AB}_1 in terms of θ and V.
 - (c) (5%) Derive the maximum achievable distance \overline{AB}_1 .

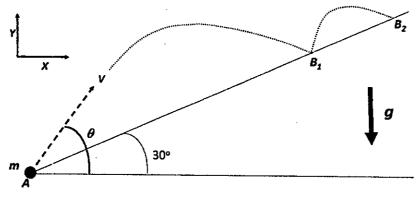


Figure 1

- 2. (25%) Consider Figure 1 with $\theta = 60^{\circ}$,
 - (a) (5%) Find the kinetic energy of the ball right before it strikes the slope the first time at B_I .
 - (b) (5%) Suppose the coefficient of restitution at B_1 is e=0.5, calculate the rebound velocity at B_1 ?
 - (c) (5%) Suppose e=0.5, estimate the energy loss during the impact at B_1 .
 - (d) (5%) Suppose e=0.5, calculate the total travel on the slop \overline{AB}_2 when the ball strikes the slope at the second time at B_2 .
 - (e) (5%) Derive the required coefficient of restitution at B_1 so that the ball achieves the maximum height after the rebound at B_{I} .
- 3. (10%) Referring to Figure 2, a pendulum of mass M is released from rest at $\theta = 30^{\circ}$ and rotates about point A with a massless rod of length L.
 - (a) (5%) Derive the angular acceleration $\ddot{\theta}$ in terms of θ .
 - (b) (5%) Calculate the system's angular momentum about A when $\theta = 120^{\circ}$.

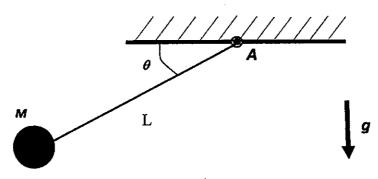
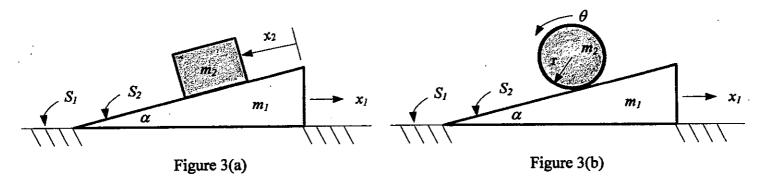


Figure 2

接背面

虎: 231 國立臺灣大學106學年度碩士班招生考試試題

科目:動力學(A)


題號:231

節次: 8

共 2 頁之第 2 頁

4. (33%) Referring to Figure 3(a), a rectangular block of mass m_2 is initially rest on a triangular block of mass m_1 .

- (a) (5%) Assuming surface S_2 is frictionless and the triangular block is motionless, derive acceleration of the rectangular block \ddot{x}_2 . In addition, derive minimum coefficient of friction μ_1 min between the triangular block and floor (i.e., surface S_1).
- (b) (5%) Assuming the surface S_2 has friction of coefficient μ_2 and the triangular block is motionless, derive the acceleration of the *rectangular* block \ddot{x}_2 . In addition, derive the minimum coefficient of friction $\mu_{1\ min}$ between the triangular block and the floor (i.e., the surface S_1) and compare the result with that derived in 4(a).
- (c) (10%) Assuming the surfaces S_1 and S_2 are frictionless, derive acceleration of the triangular block \ddot{x}_1 .
- (d) (5%) Assuming the surface S_2 has the friction of coefficient μ_2 and the surface S_1 is frictionless, derive the acceleration of the *triangular* block \ddot{x}_1 .
- (e) (8%) Now, assuming (i) the surface S_1 is frictionless and (ii) the rectangular block is now replaced by a homogeneous cylinder of mass m_2 and radius r which can roll on the surface S_2 without slippage as shown in Figure 3(b), derive acceleration of the *triangular* block \ddot{x}_1 .

- 5. (17%) A mechanism shown in Figure 4 is a widely used mechanism that can transform continuous rotational motion to swing motion. The input disk of radius r = 0.5 m rotates about a fixed axis through point O with a clockwise angular velocity $\omega_o = 20$ rad/s and a counterclockwise angular acceleration $\alpha_o = 5$ rad/s² at the instant of consideration. Pin A is fixed to the disk but slides freely within the slotted member BC.
 - (a) (6%) Determine the velocity and acceleration of A relative to slotted member BC.
 - (b) (6%) Determine the angular velocity and angular acceleration of BC.
 - (c) (5%) Assuming the member BC has mass 1 kg and radius of gyration $r_G = 0.5 \ m$ with respect to point B, determine the force between the pin and the slot.

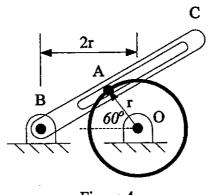


Figure 4