國立臺灣大學 105 學年度碩士班招生考試試題

題號: 55 科目:幾何 節次: 2

題號: 55 共 ン 百之第) 百

I. Let $\beta:[0,1] \to \mathbb{R}^3$ be a unite-speed curve with the curvature κ and the torsion

(a) (10%) Show that for the Frenet frame $\{T, N, B\}$

$$N' = -\kappa T + \tau B.$$

(b) (10%) Compute the Frenet frame $\{T,N,B\}$ and κ,τ of the unit-speed helix

$$\beta(s) = (a\cos\frac{s}{\sqrt{a^2 + b^2}}, a\sin\frac{s}{\sqrt{a^2 + b^2}}, \frac{bs}{\sqrt{a^2 + b^2}}), \quad a > 0.$$

II. Consider the following smooth Monge patch in \mathbb{R}^3 :

$$\mathbf{x}(x_1, x_2) = (x_1, x_2, f(x_1, x_2)).$$

Show that the image of x is

(a) (10%) flat if and only if

$$f_{x_1x_1}f_{x_2x_2} - (f_{x_1x_2})^2 = 0.$$

(b) (10%) minimal if and only if

$$(1+f_{x_1}^2)f_{x_2x_2} - 2f_{x_1}f_{x_2}f_{x_1x_2} + (1+f_{x_2}^2)f_{x_1x_1} = 0.$$

III. Show that

(a) (10%) The cylinder

$$x(x_1, x_2) = (r \cos \frac{x_1}{r}, r \sin \frac{x_1}{r}, x_2)$$

is local isometric to the Euclidean space \mathbb{R}^2 .

(b) (10%) Show that no two of sphere, torus and cylinder are isometric.

題號: 55

國立臺灣大學 105 學年度碩士班招生考試試題

科目:幾何 節次: 2

題號: 55

IV. Let $f:\Sigma\to\mathbf{R}^3$ be an isometric immersion of a smooth closed orientable Riemann surface Σ into ${\bf R}^3$. We define the Willmore energy

$$W(f) = \int_{\Sigma} H^2 dA,$$

where $H=\frac{1}{2}(\kappa_1+\kappa_2)$ is the mean curvature and κ_1,κ_2 are the principal curvatures. Show that

(a) (10%)

$$H^2 - K \ge 0,$$

where $K = \kappa_1 + \kappa_2$ is the Gauss curvature.

(b) (10%)

$$\int_{\Sigma^+} K dA \ge 4\pi,$$

 $\int_{\Sigma^+} K dA \geq 4\pi,$ where $K^+ = \max\{K,0\}$ and $\Sigma^+ = \Sigma|_{K^+}.$

(c) (10%)

$$W(f) \geq 4\pi$$
.

(d) (10%) $W(f) = 4\pi$ if and only if Σ is embedded as a round sphere in \mathbb{R}^3 .