科目:熱力學(C) 節次: 8

1. (25%) Consider thermodynamic relations involving enthalpy h, internal energy u and entropy s. The definitions of specific heats at constant pressure and that at constant volume are given by

$$C_{p} = \left(\frac{\partial h}{\partial T}\right)_{p}, \quad C_{v} = \left(\frac{\partial u}{\partial T}\right)_{v}$$

where T is the temperature, P the pressure, and v the specific volume.

- (a) (6%) Assume h = h(T, P) and derive the equation for dh in terms of C_p , dT, and dP and other thermodynamic variables.
- (b) (6%) Assume u = u(T, v) and derive the equation for du in terms of C_v , dT, and dv and other thermodynamic variables.
- (c) (7%) Assume that the equation of state of a certain substance over a certain small range of pressures and temperatures can be accurately given by

$$\frac{Pv}{RT} = 1 - C' \frac{P}{T^3} \quad \text{or} \quad v = \frac{RT}{P} - \frac{C}{T^2}$$

where C' and C are constants. Derive an expression for the change of enthalpy of this substance in an isothermal process from state 1 to state 2.

- (d) (6%) Derive an expression for the change of entropy of this substance in an isothermal process from state 1 to state 2.
- 2. (25%) Consider the ideal vapor-compression refrigeration cycle shown schematically in Fig. P2 together with the *T-s* diagram. A refrigerator uses refrigerant-134a as the working fluid and operates on an ideal vapor-compression refrigeration cycle between 132.82 kPa and 770.64 kPa. The mass flow rate of the refrigeration is 0.05kg/s.
 - (a) (7%) Describe the four processes consisted in such a cycle (i.e., 1-2, 2-3, 3-4 and 4-1).
 - (b) (6%) Determine the rate of heat removal from the refrigerated space and the power into the compressor.
 - (c) (6%) What is the rate of heat rejection to the environment?
 - (d) (6%) What is the coefficient of performance (COP) of the refrigerator?

[Hint: State 1: $h_i = h_{s@132.82kPa} = 238.41 \text{ kJ/kg}$, $s_i = s_{s@132.82kPa} = 0.9456 \text{ kJ/(kg · K)}$; State 2:

 $P_2 = 770.64 \text{ kPa}$, $s_2 = s_1$, $h_2 = 273.5 \text{ kJ/kg}$; State 3: $h_3 = h_{/@770.642\text{kPa}} = 93.58 \text{ kJ/kg}$.]

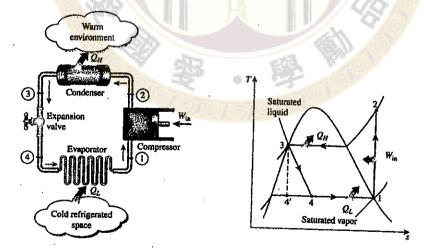


Fig. P2

題號: 279

國立臺灣大學 103 學年度碩士班招生考試試題

科目:熱力學(C)

節次: 8

題號: 279

共 2 頁之第 2 頁

3. (20%) Answer the following short questions with key descriptions, sketch, or calculations. (2% each)

- (1) Write down the first law of thermodynamics involving total energy, kinetic energy, potential energy, and internal energy.
- (2) Find the volume occupied by 3 mol of an idea gas at 200 kPa and 350 K with the universal gas constant $R = 8.314 \text{ J/(mol \cdot K)}$.
- (3) Derive an expression for the work required to expand a film of soap solution from a radius of R_1 to radius R_2 .
- (4) What is a heat engine? What is a heat pump?
- (5) Two reservoirs are respectively maintained at 300K and 600K. Find the maximum work can be obtained from 1000J of heat extracted from the hot reservoir.
- (6) Clausius inequalitiy
- (7) "Availability + Irreversibility = Total energy." Is this statement correct? Give your comment.
- (8) Give a method and instrument(s) to measure the change of entropy at a point in a flow system.
- (9) Draw a P-v diagram of an Otto cycle with short explanations.
- (10) Draw a T-s diagram of the Stirling cycle.
- 4. (15%) The initial conditions of an ideal gas in a frictionless cylinder are: $V_1 = 0.3 \text{m}^3$, $P_1 = 0.3 \text{MPa}$, $T_1 = 25^{\circ}\text{C}$, with $C_p = 27 \text{ J/(mol \cdot \text{K})}$, and $C_v = 18 \text{ J/(mol \cdot \text{K})}$. (3% each)
 - (a) Find the work done if the gas expands in isentropic process to $V_2 = 0.5$ m³.
 - (b) Find the work done if the gas expands isothermally to $P_2 = 0.15$ MPa.
 - (c) Find the gas temperature if the gas expands adiabatically to $V_2 = 0.5$ m³.
 - (d) Find the total enthalpy increased if the cylinder is heated in constant pressure process to 50°C.
 - (e) Find the work required to compress adiabatically to $V_2 = 0.15 \text{m}^3$.
- 5. (15%) A diesel engine is operated with the volume ratios of compression and expansion 15 and 7.5, respectively. The pressure and temperature at the beginning of the compression are $P_1 = 1$ bar and $T_1 = 25$ °C. For air: $C_p = 1.005$ kJ/(kg·K) and $C_v = 0.718$ kJ/(kg·K). (5%each)
 - (a) Find the temperature and pressure at the end of compression.
 - (b) Find the temperature at the end of heat added to the engine at constant pressure process.
 - (c) Find the temperature at the end of adiabatic expansion.

試題隨卷繳回