題號: 254 國立臺灣大學 103 學年度碩士班招生考試試題

科目:控制系統(B)

4

節次:

題號: 254

共 2 頁之第 / 頁

1.

A control system is designed for the position control of a machine tool, as shown in Fig.1.

A PID-controller with three control parameters, K_P , K_I and K_D , is used to implement the position control.

- (a) Derive the closed-loop transfer function. (10%)
- (b) Decide the values of the control parameter K_P , K_I and K_D to satisfy the closed-loop conditions with (i) a real pole at -20, (ii) a damping ratio of $\varsigma = 0.6$ and (iii) an undamped natural frequency of $\omega_n = 5$ rad/sec. (15%)

Fig.1

2.

An unity feedback control system with a PI-controller and an external disturbance D(s) is shown in Fig.2.

- (a) Please find the system's type and discuss the steady state error, and also find the value of K_I that will result in the steady state error $e_{ss} = 10\%$. (10%)
- (b) Using the value of K_I found in (a), please find the range of K_P for closed-loop stability. (10%)
- (c) Please use the Final Value Theorem to find the steady state error e_{ss} for a step disturbance input D(s) as $K_I \neq 0$. (10%)

Fig.2

題號: 254

節次:

國立臺灣大學 103 學年度碩士班招生考試試題

科目:控制系統(B)

題號: 254

共 乙 頁之第 乙 頁

3.

The control system of a mobile robot can be described in Fig.3, where K_1 and K_2 are feedback gains.

- (a) Please derive the state-space model for the closed-loop system, $\dot{\mathbf{X}} = \mathbf{A}\mathbf{X} + \mathbf{B}r$, $y = \mathbf{C}\mathbf{X}$. The state variables x_1 and x_2 are defined in Fig.3. (10%)
- (b) Please solve the feedback gains K_1 and K_2 to yield the two closed-loop poles at $-10 \pm j10$. (10%)

Fig.3

4.

Consider an unity feedback control system with time delay of a hydraulic servo control system as shown in Fig.4.

- (a) Please find the gain crossover frequency. (10%)
- (b) Please derive the phase margin. (10%)
- (c) Discuss the range of the time delay T for keeping the closed-loop system stable. (5%)

Fig.4

試題隨卷繳回