國立臺灣大學 103 學年度碩士班招生考試試題

題號: 56 科目:幾何 節次: 2

題號: 56 共 / 頁之第 / 頁

2014 NTU MASTER PROGRAM ENTRANCE EXAM GEOMETRY

- 1. (25%) Let $\alpha: I \to \mathbb{R}^3$ be a simple closed regular curve with $\kappa \neq 0$. Assume that the unit normal vectors $\mathbf{n}: I \to S^2$ form a simple closed curve. Show that $\mathbf{n}(I)$ separates the sphere into two parts with equal areas.
- 2. (i) (10%) Show that the only minimal surface of revolution is the catenoid: $y(u,v) = (a \cosh v \cos u, a \cosh v \sin u, av), u \in (0, 2\pi), v \in (-\infty, \infty).$
 - (ii) (10%) Show that the helicoid $x(u, v) = (a \sinh v \cos u, a \sinh v \sin u, au)$ is a minimal surface, with y being its conjugate.
 - (iii) (5%) Construct a family of isometric deformations from x to y.
- 3. (i) (10%) Show that

$$K = \frac{1}{(EG - F^2)^2} \left(\begin{vmatrix} E & F & \frac{1}{2}E_v \\ F & G & \frac{1}{2}G_u \\ \frac{1}{2}E_v & \frac{1}{2}G_u & 0 \end{vmatrix} + \begin{vmatrix} E & F & F_v - \frac{1}{2}G_u \\ F & G & \frac{1}{2}G_v \\ \frac{1}{2}E_u & F_u - \frac{1}{2}E_v & -\frac{1}{2}E_{vv} + F_{uv} - \frac{1}{2}G_{uu} \end{vmatrix} \right)$$

(ii) (10%) We say that the coordinate curves of x(u, v) form a T-net if the lengths of the opposite sides of any quadrilateral formed by them are equal. In a T-net, show that we may re-parametrize the coordinates so that E = G = 1 and $F = \cos \theta$, where $\theta = \angle(x_u, x_v)$, and then

$$K = -\theta_{uv}/\sin\theta.$$

- (iii) (5%) Is that possible for a surface S to admit a T-net for all $(u, v) \in \mathbb{R}^2$ so that S has infinite area and $K \le -c < 0$ for a constant c > 0? Explain your answer.
- **4.** (i) (15%) Show that in a geodesic polar coordinate system (ρ, θ) near $p \in S$,

$$E = 1$$
, $F = 0$, $G(p) = 0$, $\lim_{\rho \to 0} (\sqrt{G})_{\rho} = 1$.

(ii) (10%) For L(r) being the length of $\partial B_r(p) \subset S$, show that

$$K(p) = \frac{3}{\pi} \lim_{r \to 0} \frac{2\pi r - L(r)}{r^3}.$$

(You may work on each sub-problem independently. Do give your calculations and proofs in details.)