題號:258

科目:工程數學(G)

題號: 258 共 乙 頁之第 1 頁

1. Suppose

$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \qquad \mathbf{B} = \begin{pmatrix} 1 & 1 & 1 \\ & \frac{i2\pi}{3} & \frac{i4\pi}{3} \\ 1 & e^{\frac{i4\pi}{3}} & e^{\frac{i8\pi}{3}} \end{pmatrix},$$

where $i^2 = -1$.

- (a). (5%). Find A^{-1} .
- (b). (6%). Find B⁻¹.
- 2. Suppose A is a real square matrix. A is positive definite if $\mathbf{u}^T \mathbf{A} \mathbf{u} > 0$ for all real vectors $\mathbf{u} \neq \mathbf{0}$. Consider a 2×2 real symmetric matrix A with

$$Ax^{(1)} = \lambda_1 x^{(1)}, \qquad Ax^{(2)} = \lambda_2 x^{(2)},$$

where λ_1 and λ_2 are eigenvalues of A and $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ are linearly independently vectors.

Assume A is positive definite.

- (a) (5%) Show that $\lambda_1 > 0$, $\lambda_2 > 0$.
- (b) (10%). Suppose $\lambda_1 = 1, \lambda_2 = 4$, and

$$\mathbf{x}^{(1)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \mathbf{x}^{(2)} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

Find a positive definite, symmetric matrix **B** such that $B^2 = A$.

- (c) (8%). Suppose there exist two positive definite, symmetric matrices U and V such that $U^2 = A$ and $V^2 = A$. Show that U = V.
- 3. Solve the following ordinary differential equations:
 - (a) (8%) $y' = \sqrt{|y|}, y(0) = 0.$
 - (b) (8%) $x^2y'' 3xy' + 4y = 0$, y(1) = 1, y(2) = 2.
 - (c) (8%) $y'' + y = \sec x$, y(0) = 1, $y(\pi/4) = -1$.
 - (d) (8%) Consider the differential equation: x(x-1)y''+(3x-1)y'+y=0. Verify that the 1st homogeneous solution is $y_1(x)=1/(1-x)$. Find the 2nd homogeneous solution $y_2(x)$.

題號:258

國立臺灣大學99學年度碩士班招生考試試題

科目:工程數學(G)

題號: 258

共 2 頁之第 2 頁

4. Consider the partial differential equation:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 1, \qquad 0 < x < 1, \quad 0 < y < 1;$$

$$u(x,0) = 2$$
, $u(x,1) = 2$;

$$u(0, y) = 2, \quad u(0,1) = 3.$$

- (a) (15%) Solve for u(x, y).
- (b) (3%) Interpret the physical meaning of the above problem.
- (c) (2%) What is the value u at x = 0.5 and y = 0.5?
- 5. (8%) For a scalar function u(x, y, z) and a vector function V(x, y, z), express ∇u , $\nabla^2 u$, $\nabla \cdot \mathbf{V}$, $\nabla \times \mathbf{V}$ and $\nabla^2 \mathbf{V}$ in detailed forms involving derivates in Cartesian coordinates. Also express ∇u in cylindrical coordinates.
- 6. (6%) Evaluate $\oint (x^2 y^2)dx + (x^2 + y^2)dy$ if C is the square with vertices (0, 0), (1, 0), (1,1) and (0,1).