科目:普通化學(A)

題號:17

題號: 17 共2 頁之第 1 頁

※ 注意:請於試卷上「非選擇題作答區」標明大題及小題題號,並依序作答。

- 1. (10 pts) Element boron has the electron affinity 27kJ mol⁻¹ and the first ionization energy 8.30 eV atom⁻¹; the element fluorine has the electron affinity 328kJ mol⁻¹ and the first ionization energy 17.42 eV atom⁻¹.
 - (a) (6 pts) According to Mulliken's electronegativity definition, calculate the electronegativities of these two elements.
 - (b) (4 pts) Do you expect the molecule BF₃ to have a large molecular dipole? Explain your reasoning.
- 2. (16 pts) Draw the Lewis structures (include the possible resonance structures, identify those with the more important contributions) of the following molecules or ion:
 - (a) (4 pts) BF₃
 - (b) (4 pts) N₂O where the atoms are arranged in the order N N O
 - (c) (4 pts) NO₂ where N is in the middle
 - (d) (4 pts) $P_3O_9^{3-}$ where three oxygen atoms and three phosphorus atoms are connected alternately to form a ring.
- 3. (12 pts) Given the following atomic wave functions of the hydrogen atom, identify their quantum numbers $(n, l, m \ etc.)$ to name the atomic orbitals. Use suitable plots to describe the electron density of these atomic orbitals.
 - (a) (4 pts) $\psi_1 \propto z~e^{-r/(2a_0)}$
 - (b) (4 pts) $\psi_2 \propto y~e^{-r/(2a_0)}$
 - (c) (4 pts) $\psi_3 \propto (2z^2 x^2 y^2)e^{-r/(3a_0)}$

where $r = \sqrt{x^2 + y^2 + z^2}$, a_0 is the Bohr radius.

- 4. (10 pts) Consider the π system of cyclopropenium ion $C_3H_3^+$ where three carbon atoms form a ring.
 - (a) (6 pts) Construct qualitatively the molecular orbitals. Draw the orbital energy diagram and sketch the molecular orbital wave functions.
 - (b) (4 pts) What is the C-C bond orders of the neutral molecule C_3H_3 and the cation $C_3H_3^+$ respectively?
- 5. (10 pts) HCl has the force constant $k = 475.6 \text{ kg/s}^2$. The atomic mass of hydrogen and chlorine are 1.008 and 35.45 respectively.
 - (a) (4 pts) What is the energy difference between the first vibration excited state and the vibration ground state?
 - (b) (6 pts) Sketch qualitatively the IR absorption spectrum you expect for the HCl gas vapour.

題號:17

國立臺灣大學113學年度轉學生招生考試試題

科目:普通化學(A)

題號: 17

共 2 頁之第 2 頁

6. (12 pts) Given the Maxwell-Boltzmann distribution of molecular speeds

$$f(u) = 4\pi u^2 \left(\frac{m}{2\pi k_B T}\right)^{3/2} e^{-mu^2/2k_B T}$$

where u is the molecular speed, m the mass of the molecule, k_B the Boltzmann constant, T the temperature.

- (a) (5 pts) Calculate the most probable molecular speed
- (b) (7 pts) Calcuate the root-mean-square velocity. Is it larger than the most probable speed? (Hint: $\int_{-\infty}^{\infty} dx \exp(-x^2) = \sqrt{\pi}$)
- 7. (10 pts) One mole of H_2O melt from ice to water with ΔH at 0°C.

$$H_2O_{(s)} \longrightarrow H_2O_{(l)}$$
 $\Delta H^{\circ}(273K) = 16004 \text{ J mol}^{-1}$

- (a) (4 pts) What is the molar entropy change ΔS for H₂O?
- (b) (6pts) Calculate the melting ΔG at 5°C and -5°C from the (metastable) solid to (metastable) liquid. Which melting process can happen spontaneously? (Hint: You can neglect the specific heat difference of ice and the liquid water.)
- 8. (10 pts) A weak base morphine has $K_b = 8 \times 10^{-7}$. Calculate the pH for the aqueous solutions which contain
 - (a) (5 pts) 1.0×10^{-3} M morphine
 - (b) (5 pts) 1.0×10^{-6} M morphine.
- 9. (10 pts) A solution contains both solid Pb and solid Ni, and NiSO₄(aq)/PbSO₄(aq). Given the standard reduction potential data at 25°C

$$Pb^{2+}(aq) + 2e^{-} \longrightarrow Pb(s)$$
 $E_0 = -0.126V$

$$Ni^{2+}(aq) + 2e^- \longrightarrow Ni(s)$$
 $E_0 = -0.23V$

Calculate the maximal $[Pb^{2+}]/[Ni^{2+}]$ ratio at which the following reaction is spontaneous at 25°C:

$$Pb(s) + Ni^{2+}(aq) \longrightarrow Pb^{2+}(aq) + Ni(s)$$

 $R = 8.314 \text{J mol}^{-1} \text{K}^{-1}, \ F = 96485 \text{C mol}^{-1}, \ k_B = 1.38 \times 10^{-23} \text{J K}^{-1}, \ h = 6.626 \times 10^{-34} \text{J s}, \ 1\text{eV} = 1.602 \times 10^{-19} \text{J}, \ N_A = 6.02 \times 10^{23} \text{mol}^{-1}, \ c = 3.00 \times 10^8 \text{ m s}^{-1}$