國立臺灣大學113學年度轉學生招生考試試題

題號: 16

科目:微積分(B)

題號: 16

共 2 頁之第 |

Any device with computer algebra system is prohibited during the exam.

PART 1: Fill in the blanks.

- Please ensure that each answer is clearly labeled with the corresponding blank number.
- Please note that only the final answers will be graded, and each blank is worth 5 points.
- 1. (a)

$$\lim_{x \to 0} |x - \tan x|^{\frac{1}{\ln|x|}} = \underline{(1)}.$$

(b) The 3rd degree Taylor polynomial of $(1+3x)^e$ at x=0 is ___(2)__.

$$\lim_{x \to \infty} \left(x^2 \left(1 + \frac{3}{x} \right)^e - x^2 - 3ex \right) = \underline{\qquad (3) \qquad }.$$

2. Assume that the equation

$$2y^x = x + y$$

defines y as an implicit function of x, denoted by y = f(x), near the point (x, y) = (0, 2). Then f'(0) = (4). The tangent plane of the graph of $g(x, y) = 2y^x - x - y + 1$ at (0, 2, 1) is (5).

3. Compute the integrals.

$$\int \frac{1}{\sqrt{4x^2 + 4x}} dx = \underline{\qquad (6) \qquad}.$$

$$\int_0^1 \frac{x^2}{(x^2 + 1)^2} dx = \underline{\qquad (7) \qquad}.$$

 $\iint_D \frac{y}{x} dA =$ (8) , where D is the region in the first quadrant

bounded by
$$x^2 + y^2 = \frac{1}{4}$$
, $x^2 + y^2 = x$, $y = x$, and $y = 0$.

4. Let $\mathbf{F}(x,y,z) = xz\mathbf{i} + yz\mathbf{j} + (-z + ey^2)\mathbf{k}$ and S be the part of the cylinder $x^2 + y^2 = 1$ between planes z = 0 and z = 2 + x with outward orientation. A parametrization of the surface S is (9). The flux of F through S is (10).

國立臺灣大學113學年度轉學生招生考試試題

題號: 16 科目:微積分(B) 題號: 16

共 2 頁之第 2 頁

PART 2:

- Please solve the following problems and provide computations as well as explanations.
- Partial credits are allocated according to the level of completeness in your work.
- 1. Suppose that f(x) is a function defined on R satisfying the following properties.

$$|f(x) - f(0) - 3x| \le x^2 \text{ for } |x| \le 1.$$

$$f(x+y) = f(x) + f(y) + xy(x+y)$$
 for all $x, y \in \mathbb{R}$.

- (a) (5%) Find f(0) and f'(0).
- (b) (7%) Show that f(x) is differentiable and find f'(x).
- (c) (8%) Show that f(x) is one-to-one and find $\frac{d}{dx}f^{-1}(x)\Big|_{x=\frac{10}{2}}$.
- (d) (10%) Show that for any a < b,

$$\int_{f(a)}^{f(b)} f^{-1}(x) \ dx = bf(b) - af(a) - \int_{a}^{b} f(x) \ dx.$$

Find
$$\int_0^{\frac{10}{3}} f^{-1}(x) dx$$
.

- 2. (a) (10%) Find the maximum value of f(x, y, z) = z on the curve of the intersection of x + y + z = 1 and $x^2 + y^2 + z^2 = 3$.
 - (b) (5%) f(x,y,z), g(x,y,z), h(x,y,z) are differentiable functions. Assume that f obtains a local maximum value at (x_0,y_0,z_0) when restricted to g(x,y,z)=c and h(x,y,z)=k. It is known that $\nabla f(x_0,y_0,z_0)=\lambda \nabla g(x_0,y_0,z_0)+\mu \nabla h(x_0,y_0,z_0)$ for some constants λ and μ . Suppose that f(x,y,z) obtains new local maximum at (x_1,y_1,z_1) when restricted to g(x,y,z)=c and $h(x,y,z)=k+\epsilon$ where $|\epsilon|$ is small and (x_1,y_1,z_1) is close to (x_0,y_0,z_0) . Show by the linear approximation that we can approximate $f(x_1,y_1,z_1)-f(x_0,y_0,z_0)$ by $\mu \cdot \epsilon$.
 - (c) (5%) Estimate, by linear approximation, the maximum value of f(x, y, z) = z on the curve of the intersection of x + y + z = 1 and $x^2 + y^2 + z^2 = 3.02$.