國立臺灣大學113學年度轉學生招生考試試題

題號: 14 科目:微積分(A)

題號: 14

共 | 頁之第 | 頁

1. (15 points) Consider the sequence of functions $\{f_n\}_{n=1}^{\infty}$, where $f_n(x) = \frac{x}{1+nx^2}$. Does f_n converge uniformly on \mathbb{R} ? Justify your result.

- 2. (15 points) Show that $\sum_{m,n=1}^{\infty} (m+n)^{-p}$ converges if and only if p>2.
- 3. (20 points) Let $f(x,y): \mathbb{R}^2 \to \mathbb{R}$ be a C^1 function. Show that we can find two points $p, q \in \mathbb{R}^2$ so that $p \neq q$ and f(p) = f(q).
- 4. (15 points) Assume $\{a_n\}_{n=1}^{\infty}$ are positive, and $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = L$. Show that $\lim_{n\to\infty} (a_n)^{1/n} = L$.
- 5. (15 points) Let S be the surface formed by paraboloid $z=1-x^2-y^2, z\geq 0$, and the unit disk centered at the origin in xy plane. Let F=(0,0,z). Compute $\int \int_S F\cdot nds$, where n is the unit outward normal vector on S.
- 6. (20 points) Consider the integral $g(x) = \int_0^\infty \frac{\sin t}{t} e^{-tx} dt$. Show that the integral converges uniformly for $x \ge 0$.

試題隨卷繳回