國立臺灣大學103學年度轉學生招生考試試題

43 題號:

科目:普通化學(C)

題號: 43

cautorio entra sincipio del 13

共 4 頁之第 /

※ 注意:選擇題請於答案卷之「選擇題作答區」依序作答。

- Gas constant: R = 8.314 J/mol-K = 0.0821 L-atm/mol-K
- Atmic mass: H = 1.01, He = 4.00, C = 12.01, O = 16.00, N = 14.01, Cl = 35.5 Na = 22.99, K = 39.10
- $C = 3.00 \times 10^8 \text{ m/s}$; $h = 6.63 \times 10^{-34} \text{ J-s}$; F = 96500 C/mol
- 選擇題(90%,每題 3 分,單選與多重選混合,每題答案可能 1 至多個,全部選對始得題分 3 分)
- 1. Which of the following conversion is correct?

(A) -196° C = 77 K (B) 0.15 g = 15 mg (C) 15 torr = 15 cmHg (D) 74 pm = 7.4×10^{-2} nm

2. A typical commercial-grade acetic acid is 36% CH₃COOH by mass and density 1.05 g/mL. Calculate the molarity (mol/L) of the CH₃COOH.

(A) 6.3 M (B) 12 M (C) 17 M (D) 18 M

- 3. An unknown concentration of NaOH solution is standardized with potassium hydrogen phthalate (KHP, KHC₈H₄O₄). It uses 15.50 mL of NaOH solution to neutralize 0.4084 g of KHP. Which of the following statements are true?
 - (A) KHP is a monoprotic acid.
 - (B) KHP is a weak acid.
 - (C) Methyl red ($K_n = 1 \times 10^{-5}$) is a suitable indicator for the titration.
 - (D) The determined concentration of NaOH is 0.1290 M.
- 4. A quantity of 4.00×10^2 mL of 0.600 M HNO₃ is mixed with 4.00×10^2 mL of 0.300 M Ba(OH)₂ in a constant-pressure calorimeter of negligible heat capacity. The initial temperature of both solutions is the same at 20.50 °C, and the final temperature of the solution is 24.50 °C. Calculate the molar heat of neutralization. Assume the density and specific heat capacity of aqueous solution is same as water (1.00 g/mL and 4.184 J/g-°C, respectively).
- (A) -55.8 kJ/mol (B) -27.9 kJ/mol (C) -26.7 kJ/mol (D) -13.4 kJ/mol
- 5. For the reaction: $2MnO_4^-(aq) + 5C_2O_4^{2-}(aq) + 16H^+(aq) \rightarrow 2Mn^{2+}(aq) + 10CO_2(g) + 8H_2O(l)$, which of the following is true?

(A) H⁺ is the catalyst.

- (B) MnO₄ is reduced.
- (C) $C_2O_4^{2-}$ is the oxidizing agent. (D) The oxidation number of C in $C_2O_4^{2-}$ is +4.
- 6. The separated sample solutions of an unknown soluble ionic compound are treated with KCl, Na₂SO₄, and NaOH. A precipitate forms only when Na₂SO₄ is added. Which cations could be present in the unknown soluble ionic compound?

(A) Ba^{2+} (B) Co^{2+} (C) Hg_2^{2+} (D) Pb^{2+}

- 7. At 298 K and 1 atm, 16.0 g of oxygen gas (O₂) and 16.0 g of helium gas (He) are placed in a container. Both of the gases will have the same:
 - (A) number of gaseous particles
- (B) partial pressure
- (C) average kinetic energy
- (D) root-mean-square velocity
- 8. How many orbitals have the quantum number values of n = 3 and $\ell = 1$?
 - (A) 1 (B) 3 (C) 5 (D) 7

國立臺灣大學103學年度轉學生招生者試試題

題號科目		題號: 43 共 4 頁	之第 2
	(A) [Ne] 1 1 (B) [Ne]		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3s 3p e] <mark>↑↑ ↑ ↑ ↑</mark> 3s 3p	
	 10. Which of the following ranking is correct? (A) ionic radius: F⁻ > Na⁺ > Mg²⁺ (C) the first ionization energy: Li > Na > K 	(B) atomic radius: Li > Na > K(D) electronegativity: F > O > N	
	11. Which of the following molecules is linear?(A) O₃ (B) CO₂ (C) XeF₂ (D) NO₂		
	12. Which of the following molecules would sho (A) BCl ₃ (B) IF ₃ (C) PCl ₃ (D) CHF ₃	now dipole-dipole interaction between molecules?	
	 13. The structure of crystalline cesium chloride is (A) There is one Cs⁺ ion per unit cell. (B) There are four Cl⁻ ions per unit cell. (C) The ratio of Cs⁺ to Cl⁻ ion is 1/4. (D) The coordination number of Cs⁺ ion is 4. 	Cs Cs	*
	14. Which one of the following substances would (A) H ₂ NCH ₂ COOH (B) CH ₃ OH (C) CH ₃ O	ld have hydrogen bonding as one of its intermolecular force	es?
	sodium azide, NaN ₃ : NaN ₃ (s) \rightarrow 2 Na(s) + 3 1	ed by nitrogen gas generated by the rapid decomposition of N ₂ (g). If an air bag has a volume of 36 L and is to be fill at a temperature of 27.0 °C, how many grams of NaN ₃ must	lled
	16. Consider the equilibrium: N ₂ O ₄ (g) == 2NO equilibrium position to the right?	$O_2(g) \Delta H^0 = 58.0 \text{ kJ/mol}$, which of the following will shift	the
	(C) The temperature is raised.	onstant temperature. Sume and temperature to increase the total pressure.	
-	(D) A catalyst is added to the system.		•
	17. The rate law for the reaction: $2H_2(g) + 2NO(g)$ mechanism for this reaction is:	$(g) \rightarrow N_2(g) + 2H_2O(g)$ is rate = $k[H_2][NO]^2$. A suggested	
	Step 1 $2NO + H_2 \xrightarrow{k_1} N_2O + H_2$ Step 2 $N_2O + H_2 \xrightarrow{k_2} H_2O + N_2$	- -	

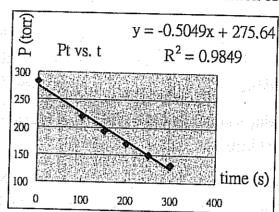
(A) Step 1 is the rate determining step. (B) For step 2, it is a bimolecular elementary step.

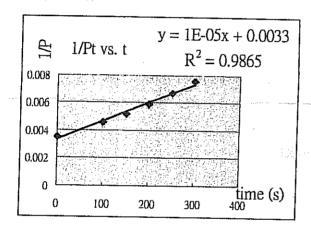
- (C) This is an acceptable mechanism.
- (D) N_2O is an intermediate.

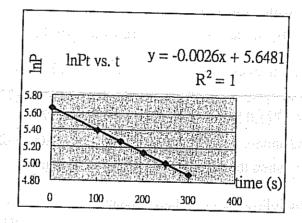
國立臺灣大學103學年度轉學生招生考試試題

題號: 43

科目:普通化學(C)


題號: 43


共 4 頁之第3 頁


18. The rate of decomposition of azomethane ($C_2H_6N_2$) is studied: $CH_3-N=N-CH_3(g) \rightarrow N_2(g) + C_2H_6(g)$. The data and derived plots obtained at 300°C are shown in the following.

- (A) This is a second order reaction.
- (B) The rate constant of the reaction is -0.0026 s⁻¹.
- (C) It takes 267 s to decompose azomethane to 142 torr.
- (D) The half-life of this decomposition reaction is dependent on the initial concentration of azomethane.

Time (s)	P _t (torr)	1/P _t	InP _t
0	284	0.00352	5.65
100	220	0.00455	5.39
150	193	0.00518	5.26
200	170	0.00588	5.14
250	150	0.00667	5.01
300	132	0.00758	4.88

- 19. Which of the following statements is true regarding the species in a 1.00 M solution of H_2SO_4 ? (A) $[H_2SO_4] = 0$ M (B) $[HSO_4] < 1.00$ M (C) $[SO_4^2] = 1.00$ M (D) $[H^+] = 1.00$ M
- 20. Consider the titration of 25.0 mL of 0.010 M acetic acid (CH₃COOH, $K_n = 1.8 \times 10^{-5}$) by 0.010 M sodium hydroxide solution:
 - (A) Before titration, the initial pH of 0.010 M CH₃COOH(aq) is 2.00.
 - (B) After adding 12.5 mL of 0.010 M NaOH to the acid, the pH of the solution is 4.74.
 - (C) At equivalence point, the pH of the solution is 7.00.
 - (D) Phenolphthalein ($K_n = 1 \times 10^{-9}$) is an appropriate indicator for the titration.
- 21. Calculate the pH value of a 0.10 M solution of ammonium chloride (NH₄Cl). K_b of NH₃ = 1.8 x 10⁻⁵. (A) 2.87 (B) 4.87 (C) 5.13 (D) 7.00
- 22. How many moles of NaCH₃COO must be added to 1.0 L of 0.10 M CH₃COOH to form a buffer whose pH is 5.00? $K_a(CH_3COOH) = 1.8 \times 10^{-5}$.
 - (A) 0.055 mol (B) 0.10 mol (C) 0.18 mol (D) 0.36 mol

國立臺灣大學103學年度轉學生招生考試試題

題號: 43

科目:普通化學(C)

題號: 43

共 4 頁之第 4 頁

- 23. Copper(II) hydroxide, Cu(OH)₂, is an insoluble solid with $K_{sp} = 1.0 \times 10^{-20}$ at 25°C. Which of the following is true?
 - (A) For $Cu(OH)_2$, $K_{sp} = [Cu^{2+}][OH]$.
 - (B) The solubility of $Cu(OH)_2$ in water at 25°C is 1.0 x 10^{-10} M.
 - (C) The solubility of Cu(OH)2 will increase in an acidic solution.
 - (D) The solubility of Cu(OH)2 will increase in concentrated NH3(aq).
- 24. Choose the one with positive entropy change ($\Delta S > 0$) for the reaction.
 - (A) $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$
- (B) $I_2(s) \rightarrow I_2(g)$
- (C) $4Al(s) + 3O_2(g) \rightarrow 2Al_2O_3(s)$
 - (D) $Cu^{2+}(aq) + S^{2-}(aq) \rightarrow CuS(s)$
- 25. For the following substance, choose the one with $\Delta H_f^0 = 0$ (standard enthalpy of formation) at 25°C? (A) O₃(g) (B) I₂(g) (C) Br₂(l) (D) Hg(l)
- 26. For the Haber process at 25°C, $N_2(g) + 3H_2(g) \implies 2NH_3(g)$ $\Delta H^o = -92 \text{ kJ}$, $\Delta S^o = -198 \text{ J/K}$, and $\Delta G^o = -33 \text{ kJ}$. What is the value of ΔG^o at 500°C. Assume ΔH^o and ΔS^o are constant with temperature.
 - (A) -33 kJ (B) -61 kJ (C) 61 kJ (D) $1.5 \times 10^5 \text{ kJ}$
- 27. For an electrochemical cell that uses Au^{3+}/Au and Ca^{2+}/Ca half-cell reactions under standard conditions and 298 K: $Au^{3+}(1.0 \text{ M}) + 3e^- \rightarrow Au$ $E^0 = 1.50 \text{ V}$ $Ca^{2+}(1.0 \text{ M}) + 2e^- \rightarrow Ca$ $E^0 = -2.87 \text{ V}$
 - (A) Ca is the anode. (B) $E^{o}_{cell} = 11.61 \text{ V}$. (C) $\Delta G^{o} = -2530 \text{ kJ}$.
 - (D) $E_{cell} < 0$, when the reaction reaches equilibrium.
- 28. Which of the following is chelating agent?
 - (A) C₂O₄² (oxalate ion) (B) NH₃ (C) NH₂CH₂CH₂NH₂ (ethylenediamine) (D) SCN⁻
- 29. For the polystyrene (PS) with the following structure
 - (A) CH₂=CHC₆H₅ is the monomer.
 - (B) This is a condensation polymer.
 - (C) This is polymerized by condensation reaction.
 - (D) This is a homopolymer.
- 30. For the following molecules choose the one that is an aldehyde?

- II. 計算問答題 (10%) ※ 注意:請於答案卷內之「非選擇題作答區」標明題號依序作答。
- 31. Consider the N₂ molecule and use the molecular orbital model, (a) draw the energy level diagram, (b) write the electron configurations, (c) determine the bond order, and (d) indicate the magnetic property of N₂ (that is diamagnetic or paramagnetic). (e) Compare the bond length with that of N₂⁻. (10%)

試題隨卷繳回