題號: 43

科目:普通化學(C)

題號: 43

0.03

0.01

共 1 頁之第

盲

※請將第1大題選擇題作答於試卷內之「選擇題作答區」。

 $C = 3.00 \times 10^8 \text{ m/s}; \ h = 6.626 \times 10^{-34} \text{ J-s}; \ R_H = 1.096776 \times 10^7 \text{ m}^{-1}; \ F = 96500 \text{ C/mol}$ Gas constant: R = 8.314 J/mol-K= 0.0821 L-atm/mol-K H = 1.01 g/mol, C = 12.01 g/mol, O = 16.00 g/mol, N = 14.01 g/mol, P = 30.97 g/mol

- I. 選擇題(60%,每題答案可能1至多個,全部選對始得題分3分)
- 1. Choose the one that has three significant figures in the answer:

(a) 22.51-2.41 (b) 1.11×2.3 (c) $861 \div 7$ (d) $\frac{(767-21.6)0.2798}{0.1015 \times 298.15}$

2. Choose the correct conversion in the followings:

(a) $15 \text{ nm} = 1.5 \times 10^{-9} \text{ m}$ (b) $75 \text{ mg} = 7.5 \times 10^{-2} \text{ g}$ (c) $5 \mu L = 5 \times 10^{-6} \text{ L}$ (d) $104^{\circ} F = 72^{\circ} C$

3. For the ferrous ion, ${}^{53}_{26}$ Fe²⁺, it contains

(a) 53 protons (b) 26 neutrons (c) 24 electrons (d) 51 nucleons.

4. A typical commercial-grade phosphoric acid is 75%H₃PO₄ by mass and density 1.57 g/mL. Calculate the molarity (mol/L) of the acid.

(a) 7.7 M (b) 12 M (c) 16 M (d) none of the above

5. A student weighs out 0.5681 g of potassium hydrogen phthalate (KHP, molar mass = 204.0 g/mol) and titrates to the equivalence point with 21.54 mL of a stock NaOH solution. What is the concentration of the stock NaOH solution?

(a) 0.01293 M (b) 0.1293 M (c) 0.06463 M (d) $6.463 \times 10^{-3} \text{ M}$

- 6. According to the plots of relative molecular speed distribution of UF₆ (Mw: 352 g/mol) and H₂ (Mw: 2.01 g/mol) gas at 273 K,
 - (a) The relative molecular speed distribution of UF₆ is plot (II).
 - (b) The average kinetic energy of H₂ is greater than UF₆.
 - (c) The root mean square velocity of H₂ is greater than UF₆.

(d) The effusion rate of UF_6 is greater than H_2 .

A 0.5865 g sample of lactic acid (C₃H₆O₃) is burned in a calorimeter whose heat capacity is 4.812 kJ/°C. The temperature increases from 23.10°C to 24.95°C. Calculate the molar heat of combustion of lactic acid.

(a) -8.902 kJ/mol (b) -15.18 kJ/mol (c) -1366 kJ/mol (d) none of the above

8. The yellow light given off by a sodium vapor lamp used for public lighting has a wavelength of 589 nm. Calculate the energy of one photon of yellow light.

(a) $3.91 \times 10^{-40} \text{ J}$ (b) $3.91 \times 10^{-31} \text{ J}$ (c) $3.37 \times 10^{-19} \text{ J}$ (d) $3.37 \times 10^{-28} \text{ J}$

9. Identify which of the following sets of four quantum numbers (n, l, m_l, m_s) can exist for an electron in an atom.

(a) (3, 0, 0, +1/2) (b) (2, 2, 1, -1/2) (c) (2, 1, 2, +1/2) (d) (4, 2, -2, 0)

見背面

題號: 43

科目:普通化學(C)

題號: 43

共儿頁之第2頁

- 10. Which of the following ranking is correct?
 - (a) ionic radius: $O^{2-} < F^{-} < Mg^{2+}$
 - (b) first ionization energy: Be < Mg < Ca
 - (c) acid strength: CH₃CH₂COOH < CH₃COOH < CICH₂COOH < FCH₂COOH
 - (d) freezing point: 0.10 m MgCl₂ < 0.10 m NaCl < 0.10 m acetic acid = 0.10 m glucose
- 11. Which of the following molecule has tetrahedral geometry?
 - (a) SiCl₄ (b) XeF₄ (c) NH₃ (d) SF₄
- 12. For the polymer with the following structure, which statement is true?

- (a) This is a condensation polymer. (b) This is a homopolymer. (c) This is a polyamide.
- (d) HOCH2CH2OH is one of the monomer.
- 13. Which of the following molecule has geometric isomers?
 - (a) $CH_3CH(NH_2)COOH$ (b) $CH_2=CCIF$ (c) $[Cr(NH_3)_4Cl_2]^{\dagger}$ (d) $[ZnCl_2(CN)_2]$ (tetrahedral)
- 14. A 0.400 g sample of a polypeptide dissolved in 1.00 L of an aqueous solution at 27°C has an osmotic pressure of 3.74 torr. What is the molar mass of the polypeptide?
 - osmotic pressure of 3.74 torr. What is the molar mass of the polypeptide? (a) 180 g/mol (b) $2.00 \times 10^2 \text{ g/mol}$ (c) $2.00 \times 10^3 \text{ g/mol}$ (d) $2.03 \times 10^5 \text{ g/mol}$
- 15. The vapor pressures of pure benzene (C₆H₆) and toluene (C₆H₅CH₃) at 20°C are 75 mmHg and 22 mmHg, respectively. Consider a mixture containing 1.0 mol of benzene and 2.0 mol of toluene at 20°C, which statement is true?
 - (a) The intermolecular force of benzene is greater than that of toluene.
 - (b) The mole fraction of toluene in the solution is 0.50.
 - (c) The total vapor pressure of the solution is 97 mmHg
 - (d) The mole fraction of benzene in the vapor phase is 0.63.
- 16. One stage in the manufacture of sulfuric acid is the formation of sulfur trioxide by the reaction of SO₂ with O₂ in the presence of a vanadium(V) oxide catalyst.

The chemical equation is $2SO_2(g) + O_2(g) \implies 2SO_3(g)$ $\Delta H = -198 \text{ kJ/mol}$

- (a) Increase the pressure by adding neon gas at constant volume will favor the formation of SO₃(g).
- (b) Compression the equilibrium mixture will favor the formation of SO₃(g).
- (c) Raising the temperature will increase the equilibrium constant of the reaction.
- (d) In the presence of catalyst, the equilibrium constant of the reaction will be increased.
- 17. What is the ratio of HCO_3^- to H_2CO_3 ([HCO_3^-]/[H_2CO_3]) in blood of pH 7.4? For H_2CO_3 , pKa₁ = 6.37, pKa₂ =10.25.
 - (a) 0.093 (b) 1.0 (c) 5.4 (d) 11

43 題號:

科目:普通化學(C)

題號: 43

共从真之第3

18. Using the following information, calculate the lattice energy of AgF(s).

enthalpy of formation of AgF(s)

-205 kJ/mol

enthalpy of formation of Ag(g)

+284 kJ/mol

ionization energy of Ag(g)

+731 kJ/mol

enthalpy of formation of F(g)

+79 kJ/mol

electron affinity of F(g)

+328 kJ/mol

(a) 971 kJ/mol (b) 1050 kJ/mol (c) 1217 kJ/mol (d) 1627 kJ/mol

19. The combustion of acetylene gas, $C_2H_2(g) + 5/2O_2(g) \rightarrow 2CO_2(g) + H_2O(1)$ is used in welding. For the reaction at standard states and 25°C, $\Delta H^{\circ} = -1299.5 \text{ kJ}$, $\Delta G^{\circ} = -1235.1 \text{ kJ}$, and $\Delta S^{o} = -215.5 \text{ J/K}$, which statement is correct?

- (a) This is a spontaneous reaction.
- (b) This is an endothermic reaction.
- (c) The entropy of the system is decreased.
- (d) The maximum amount of useful work that can be accomplished under standard conditions by this system is -1299.5 kJ.
- 20. For the reaction at 25 °C, $2NO_2(g) \implies N_2O_4(g)$

Calculate ΔG of the reaction if $P_{NQ} = 0.29$ atm, $P_{NQ} = 1.6$ atm.

(a) -5.40 kJ (b) 1.90 kJ (c) 46.44 kJ (d) -1.17 kJ

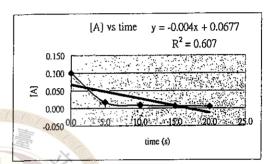
Compounds	ΔH° _f (kJ/mol)	S° (J/mol-K)	ΔG° _f (kJ/mol)
NO ₂ (g)	33.84	240.5	51.84
N ₂ O ₄ (g)	9.66	304.3	98.28

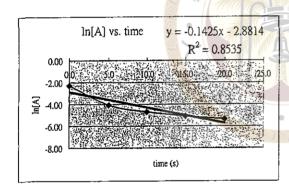
II. 計算問答題 (40%)

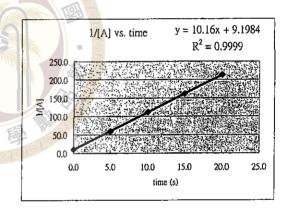
- Consider the O_2^2 ion. (a) Draw the molecular orbitals energy-level diagrams of the ion. (b) Determine the bond orders. (c) Indicate the magnetic property (diamagnetic or paramagnetic) of the ion. (10%)
- Consider the complex ion [CoF₆]³. (a) Draw the crystal-field energy-level diagram and show the placement of d-electrons of the ion. (b) Is the ion diamagnetic or paramagnetic? (c) Is the ion a low-spin or high-spin complex? (F is a weak-field ligand.) (10%)
- For the galvanic cell $Cr(s) |Cr^{3+}(aq)| |Cu^{2+}(aq)| Cu(s)$,
 - (a) Write the anodic, cathodic, and the balanced net equation for the cell reaction.
 - (b) Calculate the standard cell voltage at 298 K.
 - (c) Calculate the standard free-energy change, ΔG°, of the reaction at 25°C.
 - (d) What is the value of cell voltage when the reaction reaches equilibrium? $E^{\circ}(Cr^{3+}/Cr) = -0.74 \text{ V}, E^{\circ}(Cu^{2+}/Cu) = +0.34 \text{ V}$ (10%)

題號: 43

科目:普通化學(C)


題號: 43


共 4 頁之第4 頁


4. The gas-phase decomposition of NO_2 , $NO_2(g) \rightarrow NO(g) + O_2(g)$, is studied at 383°C, giving the following data and plots. In the figures [A] stands for [NO₂].

- (a) Determine the order of the reaction.
- (b) What is the value of the rate constant?
- (c) How long will it take for the NO_2 to drop to 0.0020 M? (10%)

Time (s)	[NO ₂] (M)	1/[NO ₂]	ln([NO ₂])
0.0	0.100	10.0	-2.30
5.0	0.017	58.8	-4.07
10.0	0.0090	111.1	-4.71
15.0	0.0062	161.3	-5.08
20.0	0.0047	212.8	-5.36

試題隨卷繳回