國立臺灣大學97學年度轉學生入學考試試題 題號: 36 科目:普通化學(B) 題號: 36 共 4 頁之第 1 頁 #### ※ 注意:請於試卷上「非選擇題作答區」依序作答,並應註明作答之題號。 #### 多重選擇題(50%) - 總分50分(答錯選項扣分,至多扣到多重選擇題爲0分) - 1. Which of the following pairs of compounds can be used to illustrate the law of multiple proportions? - A) H₂S and HCl B) SO₂ and H₂SO₄ C) NH₄ and NH₄Cl D) CH₄ and CO₂ E) NO and NO₂ - F) none of the above - 2. Which of the following combinations of names and formulas is (are) incorrect? A) PCI₅ Phosphorus pentachloride B) NO₂ nitrate C) NaHCO₃ sodium carbonate D) CIO₄ perchlorate E) [Pt(NH₂CH₂CH₂NH₂)₃]Br₄ Tris(ethylenediamine)platinum(IV) 3. Arginine contains 41.36% C, 18.37% O, 32.17% N, and 8.10% H by mass. What is its empirical formula? A) C₄H₈N₃₂O₁₈ B) C₄H₁₀N₃O₂ C) C₆H₁₄N₄O₂ D) C₄H₁₀N₃O₃ E) C₃H₇N₂O - F) none of the above - 4. To separate positive ions from each other, dilute solutions of Na₂S, NaCl, and Na₂SO₄ are available. What is the order in which the solution should be added in order to separate Ag⁺, Pb²⁺, and Ni²⁺ ions present in a sample solution? A) Na₂S, NaCl, Na₂SO₄ B) NaCl, Na₂SO₄, Na₂S C) Na₂SO₄, NaCl, Na₂S D) Na₂SO₄, Na₂S, NaCl E) NaCl, Na₂S, Na₂SO₄ - F) none of the above - 5. Which of the following statements is(are) true? - A) Oxidation occurs at the positive electrode in the voltaic cell. - B) Oxidation and reduction accompany all chemical changes. - C) Oxidation and reduction describe the loss and gain of electron(s), respectively. - D) Oxidation and reduction result in a change in the oxidation states of the species involved. - E) For silver electroplating, a pure silver metal is the cathode. - F) The net reaction in a hydrogen-oxygen fuel cell is the conversion of H2 and O2 to water - Three gases are placed separately in three closed, glass vessels at STP. Vessel X contains NH₃ gas, vessel Y contains NO₂ gas, and vessel Z contains N₂ gas. - A) The molecules in vessel Z are most ideal in gas behavior. - B) The molecules in vessel X have the highest average velocity. - C) All vessels have the same number of molecules. - D) The number of the molecules in one of the three vessels will decrease as the vessel temperature is decreased to -50℃. - E) none of the above - 7. Which of the following order of increasing pHs is correct for 0.10 M solutions of KOH, HCN, HNO₃, C₅H₅NHCl. NaF, and NaC₂H₃O₂? (K_a for HCN is 6.2 x 10⁻¹⁰; K_a for HF is 7.2 x 10⁻⁴; K_a for H C₂H₃O₂ is 1.8 x 10⁻⁵; and K_b for C₅H₅N is 1.7 x 10⁻⁹) - A) NaF, HNO₃, NaC₂H₃O₂, HCN, C₅H₅NHCl, KOH - B) KOH, NaC₂H₃O₂, NaF, HCN, C₅H₅NHCl, HNO₃ - C) HNO3, C5H5NHCI, HCN, NaF, NaC2H3O2, KOH - D) HNO₃, HCN, C₅H₅NHCl, NaF, NaC₂H₃O₂, KOH - E) HNO3, HCN, NaF, C5H5NHCl, NaC2H3O2, KOH - F) none of the above - 8. The titration of 100.0 mL of a 0.100 M solution of weak acid H₃A with 0.200 M NaOH is carried out. What are the major species (except water) at each of the following specified points in the titration? - A) HA2-, after 100.0 mL NaOH is added - B) H₂A⁻ and HA²-, after 40.0 mL NaOH is added - C) HA2- and A3-, after 120.0 mL NaOH is added - D) HA2-, after 50.0 mL NaOH is added - E) H₂A⁻⁻ and HA²⁻, after 85.0 mL NaOH is added - F) none of the above # 國立臺灣大學97學年度轉學生入學考試試題 題號: 36 科目:普通化學(B) 題號: 36 共4頁之第2頁 9. Which of the following involve(s) in an increase in the entropy of the system? - A) grinding a large crystal of KCI to powder - B) $Br_2(g) \rightarrow Br_2(l)$ C) $O_2(298 \text{ K}) \rightarrow O_2(373 \text{ K})$ - D) NH₃(1 atm, 298 K) → NH₃(3 atm, 298 K) - E) mixing benzene with toluene (Both have similar intermolecular forces.) 10. What is the minimum energy required to excite an electron in a one-dimensional box from the ground state? 8 mL² F) none of the above 11. Which of the following exhibits the correct order for increasing wavelength of electromagnetic radiation? - A) gamma rays, infrared, radio, ultraviolet - B) radio, infrared, ultraviolet, gamma rays - C) radio, ultraviolet, infrared, gamma rays - D) gamma rays, ultraviolet, infrared, radio - E) gamma rays, radio, ultraviolet, infrared 12. Which of the following sets of quantum numbers can correctly represent a 3p orbital? - A) $n=3, l=1, m_l=2$ - C) $n=1, l=3, m_l=3$ B) n = 3, l = 1, $m_l = -1$ D) n = 3, l = 2, $m_l = 1$ F) n = 3, l = 0, $m_l = 1$ E) $n = 3, l = 1, m_l = 0$ 13. Which of the following molecular shapes of the specified molecules (or their general formula) is (are) correct, as predicted by the VSEPR theory? A) linear - B) Ö=N—Ci: linear - trigonal bipyramidal C) CCI2CH2 - D) AX₃E₂ trigonal bipyramidal E) octahedral 14. In which one(s) of the following structures does the central atom have a formal charge of +2? - A) XeO₄ - B) AlCl₃" - E) BeCl₂ F) none of the above 15. The hybridization of the CI atom in CIF2+ is - A) dsp² - C) sp - E) sp²d - B) d^2sp^3 - D) sp^2 - F) none of the above 16. Which of the following statements is (are) true? A) O₂⁺ would give a bond order of 2.5 - B) C₂ is diamagnetic. - C) Six electrons are involved in pi bonding in benzene, C₆H₆ - D) N-O bond length: NO+ < NO2- E) The carbon-carbon bond in C₂²⁻ is stronger than the one in CH₃CH₃. | 虎: 36 | | 題號: 36 | |-------|---|---| | 目:普通化 | ·學(B) | 共 4 頁之第3 〕 | | | 17. The reaction 2A + B → C has the following proposed mechanism: | | | | Step 1: A + B D (fast equilibrium) | | | | Step 2: $D + B \rightarrow E$ | | | | Step 3: $E + A \rightarrow C + B$ | | | | If step 2 is the rate-determining step, then the rate of formation of C should | i equal: | | | A) k[A] B) k[A][B] | | | | C) k[A] ² [B] D) k[A][B] ² | | | | E) $k[A]^2[B]^2$ F) none of the s | above | | | 18. Which of the following statements is (are) correct? | | | | A) Hydrogen is produced when zinc metal is immerged in hydrochloric | | | | Hydrogen can react with active metals to form compounds which co | ontain H ⁺ . | | | C) Aluminum metal can react with hot, concentrated NaOH _(aq) to produ | ice hydrogen. | | | D) Combustion takes place when hydrogen and oxygen are mixed at r | oom temperature. | | | E) Pure hydrogen can be collected when water steam passes through F) Hydrogen is produced at the positive electrode when NaH_(t) is electrone. | hot coal. | | | 17 Trydrogen is produced at the positive electrode when Nandi) is electrone | rolyzea. | | | 19. Which of the following statements related to alkali metals and alkaline eart | h metals are incorrect? | | | A) They can all be obtained via electrolysis of their molten salts. | | | | B) Their oxides can all be dissolved in the strong acid. | | | | C) Their carbonate salts are all fairly soluble in water. | | | | D) Their ions present in water are all colorless and not reactive. | | | | Alkaline earth metals can form compounds of oxidation numbers +1
ns² electrons in their outer shells. | I and +2, because of the presence of | | | no cicculatis in their order Spells. | | | | 20. Which of the following orders of increasing intermolecular force is correct? | | | | A) hydrogen-bonding, dipole-dipole, London dispersion, and ionic | | | | B) London dispersion, ionic, dipole-dipole, and hydrogen-bonding | | | | C) dipole-dipole, <mark>io</mark> nic, London dispersion, and hydrogen-bonding | | | | D) dipole-dipole, London dispersion, ionic, and hydrogen-bonding | | | | E) London dispersion, dipole-dipole, hydrogen-bonding, ionic | | | | 21. The freezing point for 4.6 g of formic acid (HCOOH) dissolved in 1.0 kg of t | penzene (CeHe) is depressed by 0.26 | | | °C, whereas that for the same amount of HCOOH dissolved in 1.0 kg of wa | iter is lowered by 0.19°C. (Kr CeHe = | | | 5.12℃-kg/mol; K _{f, H2O} = 1.86℃-kg/mol) In order to explain these observation | ons, one needs to assume that | | | HCOOH is | | | | | in C ₆ H ₆ and associated in water. | | | C) associated in C ₆ H ₆ and dissociated in water. D) dissociated in | in C ₆ H ₆ and monomeric in water. | | | E) monomeric in C ₆ H ₆ and dissociated in water. F) none of the a | above | | | 22. Which of the following are structural isomers? | | | | A) optical isomers B) geometric is | omers | | | C) coordination isomers D) linkage isom | | | | E) stereoisomers F) enantiomers | | | | 22 11 Cia an impatable fractions 1888 to 15 Miles | _ | | | 23. $\frac{11}{6}$ C is an unstable isotope. Which radioactive decay would be expected? | ? | | | A) β - B) α C) β + D) α - E) | ¹ ₀ n | | | 24. The main organic compound produced when 2-pentanol reacts with sulfuri | ic acid is | | | ОН | | | | CH ₃ -CH ₂ -CH ₂ -CH-CH ₃ + H ₂ SO ₄ | | | | A) CH ₃ -CH ₂ -CH ₂ -CH ₃ -CH ₃ B) CH ₃ -CH ₂ - | ·CH=CH-CH ₃ | | | | • | | | C) $CH_3-CH_2-CH_2-CH_3$ D) $CH_3-CH_2-CH_3-CH_3-CH_3-CH_3-CH_3-CH_3-CH_3-CH_3$ | OH OH | | | c) $CH_3-CH_2-CH_2-C-CH_3$ D) $CH_3-CH_2-CH_2-CH_3-CH_3-CH_3-CH_3-CH_3-CH_3-CH_3-CH_3$ | CH-CH-CH _{3.} | # 國立臺灣大學97學年度轉學生入學考試試題 36 題號: 科目:普通化學(B) 題號: 36 共 4 頁之第 4 頁 25. Which of the following compounds is (are) optically active aldehyde? - E) - 26.(19%) Iron (II) sulfate is added to a sample solution of 100.0 mL such that the solution prepared contains 0.100 M in $Ag^*_{(aq)}$, 0.0100 M in $Fe^{3^*_{(aq)}}$ and 0.100 M in $Fe^{2^*_{(aq)}}$. (a) Calculate the equilibrium constant, based on the electrochemical data shown below, for the reaction $(Ag^*_{(aq)} + Fe^{2^*_{(aq)}} + Ag^{(s)} + Fe^{3^*_{(aq)}})$ that will take place in the solution at 25.0 °C. (b) Calculate ΔG^* for the reaction. (c) Calculate ΔG^* for $Fe^{2^*_{(aq)}}$. (d) When equilibrium for the reaction is established at 25 °C, how many moles of solid silver will be present? (ΔG_f° = -4.7 kJ/mol for Fe³⁺(aq), $Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$ $Fe^{3+}(aq) + e^{-} \rightarrow Fe^{2+}(aq)$ $\Delta G_f^{\circ} = 77.11 \text{ kJ/mol for } Ag^{\dagger}_{(aq)}$ $E^0 = 0.771 \text{ V}$ F) none of the above - 27.(13%) 50.0 mL of 0.100 M HOAc is titrated with 0.100 M NaOH. Calculate the pH at the start of the titration and after the addition of 15.0, 50.0, and 50.1 mL of titrant. (KaHOAc = 1.75 x 10.5) - 28.(8%) Bohr found that the energy of the electron in a hydrogen atom was quantized. The energy of an electron in its third energy level (n=3) is -2.421x10⁻¹⁹ J. (a) Calculate the constant which relates the energy value to the specified energy level. (b) Calculate the energy produced per gram of hydrogen for H atoms undergoing an electronic transition from the n=4 level to the n=1 level. (H=1.00794) - 29.(10%) Derive to prove that for the ideal gas in the isothermal process $q = n R T \ln \frac{v_2}{V_1}$ 試題隨卷繳回