國立臺灣大學九十六學年度轉學生入學考試試題

科目:材料科學導論

題號: 39

<u>A</u>4

共 2 頁之第 1 頁

※請在答案卷上標明題號依序作答

Q1. (5 marks)

What wt% oxygen must be present in FeO to prevent any vacancies? What fraction of the iron sites are vacancies if FeO contains 25 wt% O?

Q2. (10 marks)

"The maximum service temperature of a silica refractory brick can be increased by upgrading the alumina content!" Is this statement correct? Why or why not?

Q3. (10 marks)

- (a) Calculate the density of a FCC unit cell packed with C₆₀ buckyballs and with a lattice parameter of 1.41 nm.
- (b) What are the key reasons for carbon nanotubes' exceptional mechanical properties?

Q4. (10 marks)

- (a) Explain why the physical and mechanical properties of a material determine its possible fabrication and processing techniques.
- (b) Which ceramic-forming process or processes could be used for:
 - High-density parts?
 - ii. Dinnerware (陶瓷餐具)?
 - iii. Irregular-shape parts with thin walls?

Q5. (10 marks)

- (a) Write the coordinates for all of the tetrahedral interstitial sites in the FCC crystal structure.
- (b) Calculate the number of octahedral sites that uniquely belong to one FCC unit cell.

Q6. (15 marks)

Please calculate the amounts of Fe₃C and pearlite in steels containing 0.2% C, 0.4% C, 0.8% C, and 1.2% C. Then plot the % of Fe₃C and % of pearlite versus the carbon content. (You need to know the iron-carbon phase diagram to answer this question.)

Q7. (5 marks)

Describe a simple test to separate high-nickel stainless steel from low-nickel stainless steel.

接背面

<u>A4</u>

題號:39

<u> 4</u>

國立臺灣大學九十六學年度轉學生入學考試試題

科目:材料科學導論

題號: 39

共 2 頁之第 2 頁

Q9. (25 marks)

Material	Tensile Modulus	Tensile Strength MPa	Elongation at Break(%)
	MPa	<u> </u>	
Polyethylene (low density)	0.17-0.28	8.3-31.4	100–650
Polyethylene (high density)	1.06-1.09	22.1-31.0	10-1200
Polyvinyl chloride	2.4-4.1	40.7–51.7	4080
Polytetrafluoroethylene	0.400.55	20.7-34.5	200400
Polypropylene	1.14-1.55	31–41.4	100–600
Polystyrene	2.28-3.28	35.9-51.7	1.2-2.5
Polymethyl methacrylate	2.24-3.24	48.3–72.4	2.0-5.5
Phenol-formaldehyde	2.76-4.83	34.5–62.1	1.5-2.0
Nylon 6,6	1.58-3.80	75.9–94.5	15-300
Polyester (PET)	2.8-4.1	48.3-72.4	30–300
Polycarbonate	2,38	62.8-72.4	110-150

Room-temperature mechanical properties of some common polymers are listed in the table. Polyethylene (low density), polyethylene (high density), polyetrafluoroethylene, polypropylene, nylon 6,6, polyester (PET), and polycarbonate are semi-crystalline polymers. Polyvinyl chloride, polystyrene, polymethyl methacrylate, phenol-formaldehyde are amorphous polymers.

- (1) Why are tensile modului of polymers listed in the table about same? 5%
- (2) Why is the elongation at break of polystyrene much less than it of polypropylene? 5%
- (3) Why is the tensile modulus of polyethylene (low density) less than it of polyethylene (high density)? 5%
- (4) Is the glass transition temperature of phenol-formaldehyde less or greater than room temperature? Explain it. 5%
- (5) Give two methods to increase the tensile modulus of polypropylene without the modification of chemical structure. 5%

Q8. (10 marks)

For a polymer-matrix glass-fiber-reinforced composite, list functions of the matrix phase.

A4