題號: 389

國立臺灣大學 110 學年度碩士班招生考試試題

科目:工程數學(C)

題號: 389

節次: 6

共 3 頁之第 頁

※ 注意:請用 2B 鉛筆作答於答案卡,並先詳閱答案卡上之「畫記說明」。

- 1. (5%) Which are the following can be true for an ordinary differential equation?
- (A) One independent variable
- (B) More than one independent variable
- (C) One dependent variable
- (D) More than one dependent variable
- (E) None of the above
- 2. (5%) Which are the possible solutions of the differential equation $\frac{dy}{dx} = 3x^2 3$, where y(0) = 0?
- (A) x = 1
- (B) x = -1
- (C) $y x^3 3x$
- (D) $y = \frac{1 e^{6x}}{1 + e^{6x}}$ (E) $y = \frac{1 + e^{6x}}{1 e^{6x}}$
- 3. (5%) Which are the possible solutions of the differential equation $1 + e^{3x} \frac{dy}{dx} = 0$, where y(0) = 0.
- (A) $y = e^{3x}-1$
- (B) $y = e^{-3x}-1$
- (C) $y = \frac{1}{3}(e^{3x} 1)$
- (D) $y = \frac{3}{3}(e^{-3x} 1)$
- (E) $y = -\frac{1}{3}(e^{-3x} 1)$
- 4. (5%) Which are the possible solutions of the differential equation $\frac{dy}{dx} + 2xy^2 = 0$, where y(0) = 1.

- (A) $y = \frac{1}{x^2 + 1}$ (B) $y = \frac{1}{x^2 + x + 1}$ (C) $y = \frac{1}{\sqrt{x^2 + 1}}$ (D) $y \left(\frac{1}{x^2 + 1}\right)^2$ (E) $y = \left(\frac{x}{x^2 + 1}\right)^2$
- 5. (5%) Which is the general solution of the differential equation $\frac{dx}{dy} = e^{y/x}$? (assume C is a constant)
- $(A) \ y = e^y + e^x$
- (B) $e^y + e^x = C$
- (C) $e^{-y} + e^{-x} = C$
- (D) $e^{-y} + e^x = C$
- (E) $e^y + e^{-x} = C$

題號: 389

共 ろ 頁之第 之 頁

節次: 6

6. (5%) Which are the possible solutions of the differential equation
$$\frac{d^2y}{dx^2} + y = 0$$
, where $y(0) = 1$ and $\frac{dy(0)}{dx} = 1$?

- $(A) y = e^x$
- (B) $y = \sin(x) + \cos(x)$
- (C) $y = 2 e^{-x}$
- (D) y = x + 1
- (E) $y = -x + 2e^x 1$

7. (5%) Which is the general solution of the differential equation

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 0$$
? (assume C_1 and C_2 are constants)

- (A) $y = C_1 e^x$
- (B) $y = C_1 e^x + C_2 e^{-2x}$
- (C) $y = C_1 e^{-3x} C_2 e^{2x}$
- (D) $y = C_1 e^x + C_2 e^{2x}$
- (E) $y = C_1 e^{-3x} + C_2 e^{2x}$

8. (5%) Which is the general solution of the differential equation

$$\frac{d^2y}{dx^2} - 10\frac{dy}{dx} + 25y = 0$$
? (assume C_1 and C_2 are constants)

- (A) $y = C_1 e^{5x}$
- (B) $y = C_1 e^{-5x}$
- (C) $y = C_1 e^{5x} + C_2 e^{-5x}$ (D) $y = C_1 e^{5x} + C_2 x e^{-5x}$
- (E) $y = C_1 e^{5x} + C_2 x e^{5x}$

9. (5%) Which are the possible solutions of function f(t) for the Laplace Transform

$$F(s) = \mathcal{L}(f) = \frac{s-2}{s^2-4s+4+\pi^2}$$
?

- (A) $f = \cosh(\pi t)$
- (B) $f \sinh(\pi t)$
- (C) $f = e^{2t} \cos(\pi t)$ (D) $f = e^{2t} \sin(\pi t)$
- (E) $f = e^{2t} 4e^{\pi t}$

(5%) Which are the possible solutions of system of equations for x(t) and y(t), where y(0) = 1 and 10.

$$\frac{\frac{dy(0)}{dx} = 1?}{\begin{cases} \frac{d^2x}{dt^2} - \frac{dx}{dt} + \frac{d^2y}{dt^2} = -2\sin(t) \\ \frac{d^2x}{dt^2} + \frac{dx}{dt} + \frac{d^2y}{dt^2} = 0 \end{cases}}$$

題號: 389

國立臺灣大學 110 學年度碩士班招生考試試題

科目:工程數學(C)

節次: 6

(B)
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \sin(t) \\ t+1 \end{bmatrix}$$

(C)
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos(t) \\ \sin(t) \end{bmatrix}$$

(B)
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \sin(t) \\ t+1 \end{bmatrix}$$
(C)
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos(t) \\ \sin(t) \end{bmatrix}$$
(D)
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos(t) \\ e^t \end{bmatrix}$$
(E)
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \sin(t) \\ e^t \end{bmatrix}$$

(E)
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \sin(t) \\ e^t \end{bmatrix}$$

- (10%) Let Q be an $n \times n$ matrix. Then which of the following set is not a subspace?
- (A) Col Q
- (B) Null Q
- (C) rank O
- (D) Row Q
- (E) None of the above
- 12. (10%) Let M be a subset of \mathbb{R}^3 containing two or more vectors. Then:
- (A) The span of any two vectors in M is a plane in \mathbb{R}^3
- (B) Every vector in M is in the span of M
- (C) If M contains more than three vectors, then M is linearly independent
- (D) The span of any two nonzero vectors in M is a plane in \mathbb{R}^3
- (E) None of the preceding statements is true
- (10%) Which of the following statements is true for all $n \times n$ matrices Q?
- (A) Q has n distinct eigenvalues
- (B) If one of the eigenvalues of Q has multiplicity greater than one, then Q has fewer then n eigenvalues
- (C) If Q has no eigenvalues, then the degree of its characteristic polynomial is zero
- (D) If one of the eigenvalues of Q has multiplicity greater than one, then Q has fewer than n eigenvectors
- (E) None of the preceding statements are true
- (10%) Suppose that s, t, and u are vectors in G^n such that s is orthogonal to u and u is orthogonal to t. Then 14.
- (A) For any orthogonal $n \times n$ matrix G, we have that Gs is orthogonal to u
- (B) For any orthogonal $n \times n$ matrix G, we have that Gu is orthogonal to both s and t
- (C) s is orthogonal to t
- (D) s + t is orthogonal to u
- (E) None of the preceding statements are true
- 15. (10%) An $m \times n$ matrix X is invertible if
- (A) The columns of X span R_m
- (B) The reduced row echelon form of X is I_n
- (C) The rows of X are linearly independent
- (D) The columns of X are linearly independent
- (E) None of the preceding statements is true