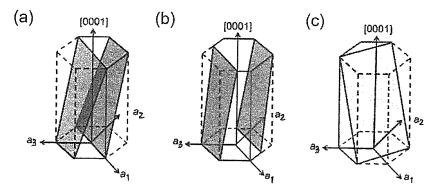
題號: 251

國立臺灣大學 110 學年度碩士班招生考試試題


科目: 材料工程學

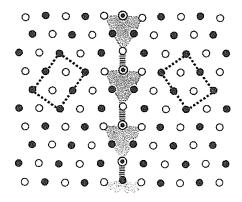
題號:251

共2頁之第1頁

節次: 6

- 1. Please explain, in details, two of the following materials fields: (1) high-entropy alloy, (2) gradient materials, (3) MRAM, (4) 2D materials, and (5) quantum materials. (10%)
- 2. Of poly(hexamethylene adipamide) and poly(hexamethylene adipate), which polymer would be better used for cloth? Why? (10%)
- 3. A crystalline polymer was stretched several hundred % at room temperature (RT). X-ray diffraction spectrum was acquired while held under tension. When the sample was released, the polymer retracted and diffraction peaks disappeared. Explain this phenomenon, especially with consideration of relationship between T_m and RT. (10%)
- 4. Sketch crystal structure of BaTiO₃, Al₂O₃, and ZrO₂. (10%)
- 5. Please list, as least, four methods to improve fracture strength of ceramic materials. (10%)
- 6. Why is Si-Ge proposed to be promising semi-conductor materials? Please answer this question in English only. (10%)
- 7. Please index gray planes as shown below by Miller indices. (10%)

題號: 251 國立臺灣大學 110 學年度碩士班招生考試試題


科目: 材料工程學

題號:251

節次: 6

共2頁之第2頁

8. The schematic diagram below shows a grain boundary of face-centered cubic crystals along [1 1 0] projection direction. Please define Σ value for this boundary. Is it a coherent boundary? (10%)

- 9. "In metallic materials, raising work hardening rate could enhance materials elongation." Please justify this statement in details. (10%)
- 10. What is delayed fracture in general? Of 304L and 316L stainless steels, which could have higher susceptibility to delayed fracture. (10%)