424

國立臺灣大學 107 學年度碩士班招生考試試題

斜目: 電磁學及電磁波

題號: 424

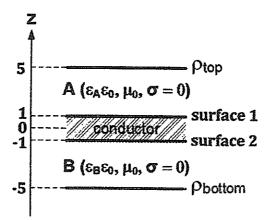
共3页之第1页

(15 points) A uniform plane wave traveling in free space is expressed as $(\varepsilon_0 = 10^{-9} / (36\pi) \text{ F/m})$ and $\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$

$$\overline{E}(x,t) = 5\sin(\omega t - k_0 x - \pi/6)\hat{y} + 6\sin(\omega t - k_0 x + \pi/4)\hat{z}, \quad \text{(unit: V/m)}$$
(1)

where ω and k_0 are the angular frequency of the wave and wavenumber in free space.

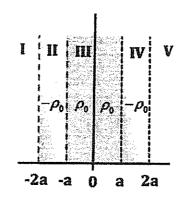
- (a) What is the propagation direction and the free space intrinsic impedance? (2 points)
- (b) Please express (1) in the phasor form. (3 points)
- (c) Please express the solution of magnetic field, $\overline{H}(x,t)$? (4 points)
- (d) Find the time-average power density of the wave in W/m² (6 points) (Show detailed derivations)
- (20 points) Consider two infinite planar conducting sheets at $z = \pm 5$ cm, which create a vertically polarized electric field $E_0 \hat{z}$ inside the internal area of free space. (Show detailed derivations)
 - (a) Please find the induced charge densities, ρ_{top} and ρ_{bottom} , at z = 5 cm and z = -5 cm, respectively. (5points)
 - (b) Now one inserts an infinite conductor slab of thickness, 2cm, into the internal area at z=0 cm to form the configuration below. The free space is also replaced by dielectric materials. Assume the charge densities are ρ_{top} and ρ_{bottom} uniformly distributed over the two charge sheets at $z = \pm 5$ cm. Find the surface charge densities at the two surfaces of the conductor slab. (5 points)
 - (c) From (b), please find the electrical fields in region A and B, respectively. (5points)
 - (d) What will happen to (b) and (c) if the conductor slab with a new thickness, 1.5 cm, is moved to z = 2 cm inside the internal area? (5 points)



3. (15 points) Consider the charge distribution given by the densities:

$$\rho = \begin{cases}
-\rho_0 & \text{for } -2a < x < -a \\
+\rho_0 & \text{for } -a < x < a \\
-\rho_0 & \text{for } a < x < 2a
\end{cases} \tag{2}$$

where ho_0 is a constant. Please find the electrical fields in the five regions.



見背面

題號: 424

國立臺灣大學 107 學年度碩士班招生考試試題

科目: 電磁學及電磁波

題號:424

節次: 7

共 3 頁之第 2 頁

4. (15 points) The voltage and current waves in Fig.4(a) can be represented as

$$\begin{split} V(z) &= V_{+}e^{-jkz} + V_{-}e^{jkz} = V_{+}e^{-jkz} \left[1 + \Gamma(z) \right] \\ I(z) &= \frac{V_{+}}{Z_{0}}e^{-jkz} - \frac{V_{-}}{Z_{0}}e^{jkz} = \frac{V_{+}}{Z_{0}}e^{-jkz} \left[1 - \Gamma(z) \right] \\ & \text{where } \Gamma(z) = \Gamma_{L}e^{2jkz} \text{ and } \Gamma_{L} = \frac{V_{-}}{V_{+}} = \frac{Z_{L} - Z_{0}}{Z_{L} + Z_{0}} \end{split}$$

(a) Derive the formula of input impedance $Z_{in}=Z(z=-\ell)$. (5 points)

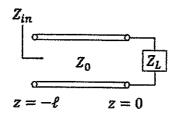


Fig. 4(a)

(b) In Fig.4(b), three transmission lines (each with a short-circuited load) are connected at z=0. The lengths of these transmission lines are ℓ_1 , ℓ_2 and ℓ_3 , respectively; the wavenumbers on these transmission lines are k_1 , k_2 and k_3 , respectively; and the characteristic impedances of these transmission lines are Z_1 , Z_2 and Z_3 , respectively. Apply KVL and KCL at z=0 to derive the resonant condition. (5 points)

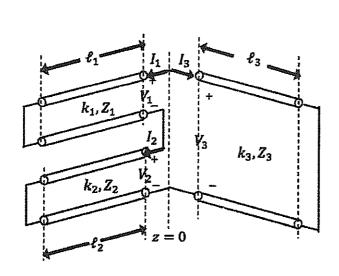


Fig. 4(b)

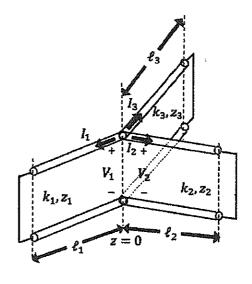


Fig. 4(c)

- (c) In Fig.4(c), three transmission lines (each with a short-circuited load) are connected at z=0. The lengths of these transmission lines are ℓ_1 , ℓ_2 and ℓ_3 , respectively; the wavenumbers on these transmission lines are k_1 , k_2 and k_3 , respectively; and the characteristic impedances of these transmission lines are Z_1 , Z_2 and Z_3 , respectively. Apply KVL and KCL at z=0 to derive the resonant condition (5 points)
- 5. (15 points) As shown in Figure 5, the magnetic field of an incident plane wave of TM polarization is represented as $\bar{H}_i(\bar{r}) = \hat{y}H_0e^{jk_1x^2-jk_2z}$. The reflected magnetic field can be represented as $\bar{H}_r(\bar{r}) = \hat{y}RH_0e^{jk_1x^2-jk_2z}$, and the transmitted magnetic field can be represented as $\bar{H}_i(\bar{r}) = \hat{y}TH_0e^{jk_2x^2-jk_2z}$, where R is the reflection coefficient and T is the transmission coefficient.

424

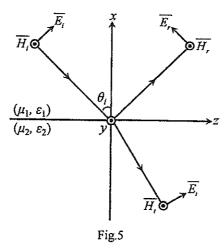
國立臺灣大學 107 學年度碩士班招生考試試題

電磁學及電磁波

節次:

題號: 424

共 3 頁之第 3 頁



- (a) Derive the incident, reflected and transmitted electric fields by using $\overline{E}(\overline{r}) = \frac{1}{i\omega\varepsilon} \nabla \times \overline{H}(\overline{r})$. (5 points)
- (b) Impose the boundary condition that the tangential electric and magnetic fields are continuous at x=0 to solve R and T. (5 points)
- (c) If $\varepsilon_1 > \varepsilon_2$ and $\theta > \theta_c$, ($\theta_i = \theta_c$ is the critical angle) represent R and T as $R = |R|e^{j\psi}$ and $T = |T|e^{j\xi}$. Derive the expressions of |R| ψ , |T| and ζ . (5 points)
- 6. (20 points) The vector potential $\overline{A}(\overline{r})$ induced by a Hertzian dipole $\hat{z}I\ell$ at the origin can be represented in the spherical coordinate as $\overline{A}(\overline{r}) = \hat{z} \frac{\mu I \ell}{4\pi r} e^{-jkr}$.
 - (a) Derive the magnetic field in the spherical coordinate by using $\overline{H}(\overline{r}) = \frac{1}{U} \nabla \times \overline{A}(\overline{r})$. (5 points)
 - (b) Derive the electric field in the spherical coordinate by using $\bar{E}(\bar{r}) = \frac{1}{j\omega\varepsilon} \nabla \times \bar{H}(\bar{r})$. (5 points)
 - (c) Derive the time-average power density by using the far-field expressions . (5 points)
 - (d) Derive the directivity as a function of zenith angle θ and azimuth angle ϕ , i.e., the ratio of the power density radiated by the antenna as a function of (θ, ϕ) to the average power density. (5 points)
 - A random
 A random</

試題隨卷繳回