國立臺灣大學106學年度碩士班招生考試試題

題號: 422

節次:

題號: 422

頁之第 1 共

科目:電子學(D)

(10%) Design the quiescent current of a class AB BJT output stage so that the incremental voltage gain for v_I in the vicinity of the origin is 0.8 V/V for the load equal to 100 Ω . Assume that the BJTs have V_{BE} of

0.7 V at a current of 100 mA and determine the value of V_{BB} required.

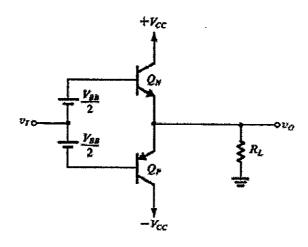


Fig. 1 Class AB output stage

(a) (5%) Show that the PSRR of a CMOS two-stage op amp for which all transistors have the same channel length and are operated at equal $|V_{o\nu}|$ is given by

$$PSRR^{2} = 2 \left| \frac{V_{A}}{V_{OV}} \right|^{2}$$

(b) (5%) For $|V_{OV}| = 0.2 \,\text{V}$, what is the minimum channel length required to obtain a PSRR of 80 dB? For the technology available, $|V_A| = 20 \text{ V/}\mu\text{m}$.

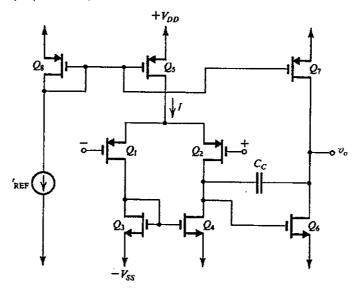


Fig. 2 The basic CMOS two-stage op-amp

3. (a) (5%) Using the fact that for $Q \gg 1$ the second-order bandpass response in the neighborhood of ω_0 is the same as the response of a first-order low-pass with 3-dB frequency of $(\omega_0/2Q)$, show that the bandpass response at $\omega = \omega_0 + \delta \omega$, for $\omega \ll \omega_0$, is given by

$$|T(j\omega)| \cong \frac{|T(j\omega_0)|}{\sqrt{1+4Q^2(\delta\omega/\omega_0)^2}}$$

(Hint: first-order low-pass transfer function is $T(s) = \frac{\omega_0}{s + \omega_0}$)

國立臺灣大學106學年度碩士班招生考試試題

科目:電子學(D)

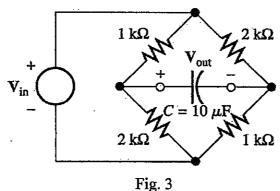
題號: 422

節次: 8

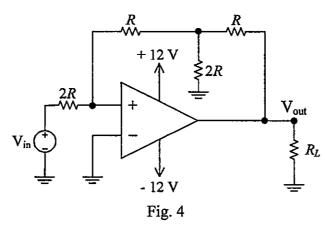
題號: 422

共 3 頁之第 2 頁

(b) (5%) Use the relationship derived in (a) together with the 3-dB bandwidth B of the overall amplifier to show that a bandpass amplifier with a 3-dB bandwidth B, designed using N synchronously tuned stages, has an overall transfer function given by


$$\left|T(j\omega)\right|_{\text{overall}} = \frac{\left|T(j\omega_0)\right|_{\text{overall}}}{\left[1+4(2^{1/N}-1)(\delta\omega/B)^2\right]^{N/2}}$$

(Hint: 3-dB bandwidth
$$B = \frac{\omega_0}{O} \sqrt{2^{VN} - 1}$$
)


(c) (3%) Use the relationship derived in (b) to find the attenuation (in decibels) obtained at a bandwidth 2B for N = 5. Also find the ratio of the 30-dB bandwidth to the 3-dB bandwidth for N = 5.

(Hint: attenuation function
$$A(\omega) = -20 \log |T(j\omega)|$$
)

4. (10%) Find the transfer function of the following circuit and determine the value of the half-power frequency.

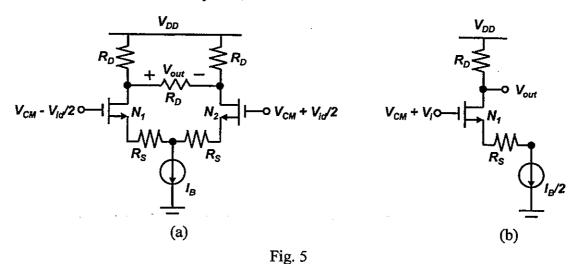
5. (10%) Assuming that the operational amplifier is almost ideal, what is the output voltage V_{out} for $V_{in} = 100$ mV, R = 20 ohm.

- 6. (a) (5%) Draw the schematic diagram of a CMOS inverter and indicate clearly the connection of input, output, supply voltage, and ground to the transistor terminals (including body). (no partial credit will be given)
 - (b) (8%) Draw the cross-section of physical structure of the above CMOS inverter and show all the transistor terminals. (no partial credit will be given)

國立臺灣大學106學年度碩士班招生考試試題

科目:電子學(D)

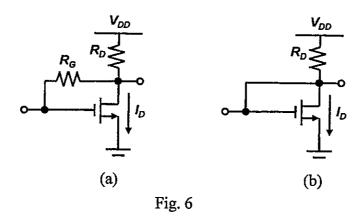
題號: 422


題號: 422

7. In Fig. 5, I_B is 1 mA, $R_D = 6 \text{ k}\Omega$, $R_S = 400 \Omega$, transistors N_I and N_2 have W/L = $20 \mu\text{m}/0.2 \mu\text{m}$. Let $K_{n'} = 250 \mu\text{A}/\text{V}^2$; ignore the channel-length modulation effect. Assume both circuits of Fig. 5(a) and 5(b) are properly biased (V_{CM} is a bias voltage) such that all transistors operate in the saturation region.

(a) (6%) For the circuit shown in Fig. 5(a), find the transistor V_{OV} and g_m , and the voltage gain, V_{out}/V_{id} , of the circuit.

(b) (6%) If you want to double the gain (V_{out}/V_{id}) of the circuit by changing the resistance value of R_S , what value would you adjust R_S ?


(c) (6%) The circuit of Fig. 5(a) is modified to a single-ended circuit shown in Fig. 5(b). Find the voltage gain, V_{out}/V_i , of this circuit. Please show your derivations.

8. (a) (6%) Fig. 6(a) shows a basing technique to stabilize the drain current (I_D) of a MOS circuit. Explain how this circuit topology helps to stabilize I_D .

(b) (5%) Fig. 6(b) is modified from Fig. 6(a) by removing R_G and connecting the drain and gate terminals together. Can this modified circuit of Fig. 6(b) maintain a stable I_D ? Please state your reason.

(c) (5%) Can the circuit of Fig. 6(b) be applied to a common-source amplifier? Please state your reason.

