題號: 231 國立臺灣大學 102 學年度碩士班招生考試試題

科目:動力學(D)

共 乙 頁之第 / 頁

節次: 8

1. As shown in Figure 1, Link ABD is connected by pins to a collar at B and to crank DE. Determine (a) the angular velocity of link ABD (15%) and (b) the velocity of point A (15%), if the velocity of collar B is 40.6 cm/sec upward.

- 2. (15%) The robot shown in Figure 2 has five degrees of rotational freedom. The $\underline{X-Y-Z}$ axes are attached to the base ring, which rotates about the \underline{Z} -axis at the rate ω_1 . The arm O_1O_2 rotates about the \underline{X} -axis at the rate $\omega_2 = \dot{\theta}$. So the coordinate system x-y-z with origin at O_2 rotates about the \underline{X} -axis at the rate $\dot{\theta}$. The control arm O_2A rotates about axis O_1-O_2 at the rate ω_3 and about a perpendicular axis through O_2 which is momentarily parallel to the \underline{X} -axis at the rate $\omega_4 = \dot{\beta}$. Finally, the jaws rotate about axis O_2 -A at the rate ω_5 . The magnitudes of all angular rates are constant. For the configuration shown, determine the magnitude ω of the total angular velocity of the jaws for $\theta = 60^\circ$ and $\beta = 45^\circ$ if $\omega_1 = 2$ rad/s, $\dot{\theta} = 1.5$ rad/s, and $\omega_3 = \omega_4 = \omega_5 = 0$. Also express the angular acceleration α of arm O_1O_2 as a vector.
- 3. (15%) For the same robot in Problem 2, but this time $\underline{X-Y-Z}$ axes are nonrotating. If $\omega_2 = \dot{\theta} = 3$ rad/s constant, $\omega_3 = 1.5$ rad/s constant, $\omega_1 = \omega_5 = 0$, $\overline{O_1O_2} = 1.2$ m, and $\overline{O_2A} = 0.6$ m, determine the velocity of the center A of the jaws for the instant when $\theta = 60^\circ$. The angle β lies in the y-z plane and is constant at 45° .
- 4. In Figure 3, gear 1 is fixed to the pulley of radius a, from which the mass m is suspended at the end of a vertical massless cable. J₁ is the moment of inertia, with respect to the fixed center A, of the gear and pulley. J₂ is the moment of inertia with respect to fixed center B of the mating gear 2. N₁ and N₂ are the numbers of teeth in gear 1 and 2, respectively. (a) Find the angular acceleration of gear 1 (13%), (b) Find the tension in the cable (12%).
- 5. (15%) Shown in Figure 4, a tennis player strikes the tennis ball with her racket while the ball is still rising. The ball speed before impact with the racket is v_1 =30 m/sec and after impact its speed is v_2 =44 m/sec with direction as shown in the Fig. 2. If the 60-g ball is in contact with the racket for 0.1 sec, (a) If not considering the ball weight, determine the magnitude of the average force R exerted by the racket on the ball. (b)Find the angle made by R with the horizontal. (c)If the ball weight is considered, how does it affect the result of (a)?

題號: 231 國立臺灣大學 102 學年度碩士班招生考試試題

科目:動力學(D)

題號: 231 共 2 頁之第 2 頁 節次: 8

Figure 1 (for Problem 1)

Figure 2 (for Problem 2 & 3)

Figure 3 (for Problem 4)

Figure 4 (for Problem 5)

試題隨卷繳回