題號:408

國立臺灣大學99學年度碩士班招生考試試題

科目:電磁學(C)

408 共 2 頁之第

※ 請於答案卷上非選擇題作答區標明題號作答。簡答題及作圖題計算過程不計分。計算題請詳列過程。 Useful constants: $\varepsilon_0 = 10^{-9}/(36\pi) \text{ F/m}, \, \mu_0 = 4\pi \times 10^{-7} \text{ H/m}$

- 1. (簡答題) The core and cladding refractive indices of a fiber are 1.5 and 1.0, respectively. Its diameter is 100 μm. If it is a single mode fiber, the cut-off wavelength is _____ \mu m. (3%)
- 2. (簡答題) A plane wave is launched from free space to a nonmagnetic dielectric with $\varepsilon_r=3.0$. The dielectric and free space are separated by z = 0 plane. The magnetic field of the wave is parallel to the z = 0 plane. The incident angle is 60 degrees with respect to z-axis. The reflection coefficient is $\Gamma =$ (3%)
- 3. (簡答題) Two dipole antennas in free space are situated at two points in x-axis, $(\lambda/2, 0, 0)$ and $(-\lambda/2, 0, 0)$, with currents $I_1 = I_o \cos(\omega t + \frac{\pi}{2})$ and $I_2 = I_o \cos(\omega t - \frac{\pi}{2})$, respectively, where λ and ω are the wavelength and angular frequency, respectively. The group pattern of the antenna array has maximum in _ minimum in ______. Note: Your answer should be some direction(s) or some plane(s). (6%)
- 4. (計算題) A parallel-plate resonator consists of two infinite, plane, perfectly conducting plates in the z=0 and z = d planes. The plates are separated by a perfect dielectric with dielectric constant ε and permeability μ . The electric field is given by $\mathbb{E} = E_0 \cos(\phi - nkz) \cos(n\omega t) \mathbf{a}_x$, where n = 1, 2, 3, ...
 - (a) Write ϕ , k and ω in terms of d, ε , and μ . (6%)
 - (b) Find the energy stored in the resonator per unit area of the plates. (5%)
 - (c) If the plates are made of imperfect but good conductors with conductivity σ , find the quality factor Q of the resonator in term of d, ε , μ , and σ . (6%)
 - (d) The dielectric is made of glass with refractive index n = 2.0. The plates are made of aluminum with conductivity $\sigma = 3.5 \times 10^7 \, (\text{S/m})$, and separated by $d = 0.5 \, \text{cm}$. Compute the value of Q for the fundamental mode of oscillation. (4%)
- 5. (簡答題及作圖題) In the system shown in Figure 1, a passive nonlinear element having the indicated volt-ampere characteristics is connected to an initially charged line at t = 0.
 - (a) The voltage across the nonlinear element immediately after closure of the switch is _____
 - (b) Use the load-line technique to obtain and plot line voltage versus t from t = 0 up to $t = 7l/v_p$ at z = 0 (4%) and z = l. (4%)

Figure 1 (for Question 5)

Figure 2 (for Question 6)

- 6. (計算題) In the system shown in Figure 2, the time-average power delivered to the resistor R_L is a maximum if a proper value of the reactance X is used.
 - (a) Find the value of the reactance X. (5%)
 - (b) Find the minimum value of the line length l. (5%)
 - (c) Find the maximum time-average power delivered to the load R_L . (5%)

見背面

國立臺灣大學99學年度碩士班招生考試試題

科目:電磁學(C)

題號: 408

題號: 408

共 2 頁之第 2 頁

(續第 6 題)

- (d) Find the SWR on the line. (5%)
- 7. (計算題) Light can be treated as an electromagnetic wave. Consider a *plane wave* of infrared light which has a wavelength $\lambda_0 = 1.5 \times 10^{-6}$ m when it propagates in the *free space*. Answer the following questions.
 - (a) What is the frequency f(in Hz) of this electromagnetic wave when it propagates in the free space? (2%)
 - (b) Assume this electromagnetic wave enters a dielectric medium with a relative permittivity (i.e. dielectric constant) $\varepsilon_r = 4$ and a relative permeability $\mu_r = 1$. What are the <u>①frequency f (in Hz)</u> (2%), <u>②wavelength</u> (2%), and <u>③phase velocity</u> (2%) of this electromagnetic wave when it propagates in this dielectric medium?
- 8. (計算題) Consider a capacitor formed with two identical circular conductor plates and a dielectric cylinder. Figure 3 is the side view of the capacitor. Each plate has a radius R and the spacing between the plates is d. The dielectric cylinder has a radius r and a height h and is fixed at the center of the bottom plate. The cylinder material has a relative permittivity \varepsilon_r. A voltage V is applied between the plates and the free-space permittivity is \varepsilon_0. Answer the following questions. [Note: (1) Please neglect the fringing of fields. (2) R > r; d > h.]
 - (a) Find the electric field intensity in region ①? (2%)
 - (b) Find the electric field intensity in region 2? (3%)
 - (c) Find the electric field intensity in region (3)? (3%)
 - (d) Find the total charge on the top plate? (3%)
 - (e) Find the capacitance of this capacitor? (3%)
 - (f) Find the total electric stored energy W_e in the capacitor? (3%)
 - (g) Find the mechanical force F_e of electric origin exerted on the *top plate*? (7%) Is it upward or downward? (2%)

(Side view of the capacitor)

Figure 3 (for Question 8)

試題隨卷繳回