1) Apply Laplace transform to solve the initial value problem. (20%)

$$\frac{dy_1}{dt} = 5y_1 + 5y_2 - 15\cos t + 27\sin t$$

$$\frac{dy_2}{dt} = -10y_1 - 5y_2 - 150\sin t$$

$$y_1(0) = 2$$

$$y_2(0) = 2$$

 Find the eigenvalues (5%) and eigenfunctions (5%) of the differential equation below and also check the orthogonality between the eigenfunctions (5%).

$$\frac{d^2 y}{dx^2} - 2\frac{dy}{dx} + (\lambda + 1)y = 0$$
$$y(0) = 0$$
$$y(1) = 0$$

3) Solve the differential equation. (15%)

$$x^{2} \frac{d^{2} y}{dx^{2}} - 7x \frac{dy}{dx} + 16y = 0$$

4) Please solve the boundary value problem. (20%)

$$\frac{\partial^2 y}{\partial t^2} = \frac{\partial^2 y}{\partial x^2} \text{ for } 0 < x < \pi, \ t > 0,$$

$$y(0,t) = y(\pi,t) = 0 \text{ for } t \ge 0,$$

$$y(x,0) = 0 \text{ for } 0 \le x \le \pi,$$

$$\frac{\partial y}{\partial t}(x,0) = x(1+\cos(x)), \text{ for } 0 \le x \le \pi$$

Please integrate the following functions around C counterclockwise or as indicated.

(a)
$$f(z) = \frac{2z^3 - 3}{z(z - 1 - i)^2}$$
, C consists of $|z| = 2$ (counterclockwise) and

|z| = 1 (clockwise). (10%)

(b)
$$f(z) = z^{-2} \tan \pi z$$
, C any contour enclosing 0. (10%)

6) Please find the Fourier series of f(x). (10%)

$$f(x) \begin{cases} x, & \text{if } -\pi/2 < x < \pi/2 \\ \pi - x, & \text{if } \pi/2 < x < 3\pi/2 \end{cases}$$