Write down your answers in order. You should include all the necessary calculation and reasoning.

- (10%) 1. Suppose $f(x) = Ax^5 + Bx^4 + Cx + 101 \le 101$ for all x and f(1) = 1. Determine the values of A, B and C.
- (10%) 2. Suppose f(x) is a differentiable function defined on $(-\infty, \infty)$, satisfying f(x+y) = f(x) + f(y), for every x and y. Show that f''(x) = 0.
- (10%) 3. Evaluate the definite integral $\int_0^{\pi} x \sin x dx$.
- (10%) 4. Estimate the value of $\ln 1.1$ so that the error is smaller than 10^{-5} .
- (10%) 5. Evaluate the volume of the solid bounded by the surface

$$2x^2 + 3y^2 + 3z^2 = 6.$$

(10%) 6. Suppose F(x,y) and G(x,y) are two differentiable functions defined on $\mathbb{R}^2 = \{(x,y) \mid x,y \in (-\infty,\infty)\}$ so that the gradients $\nabla F(x,y) = (\frac{\partial F}{\partial x}(x,y), \frac{\partial F}{\partial y}(x,y)), \nabla G(x,y) = (\frac{\partial G}{\partial x}(x,y), \frac{\partial G}{\partial y}(x,y))$ are always parallel in the sense that, for every (x,y), there is a number λ , possibly dependent of the point (x,y), satisfying

$$\nabla F(x,y) = \lambda \cdot \nabla G(x,y)$$

Is it true that F must be a constant multiple of G? Prove it or give a counter example.

- (10%) 7. Suppose f(x) is a continuous function defined on [-1,1] so that $\int_a^b f(x)dx \ge 0$ for every $a,b \in [-1,1], a \le b$. Give a reason why we can or can not conclude that $f(x) \ge 0$, for every $x \in [-1,1]$.
- (10%) 8. Solve the differential equation

$$y' = 100y - y^2$$
, $y(0) = 1$.

(10%) 9. Evaluate the integral $\int \int_D (x^2 - y^2) dx dy$, where

$$D = \{(x, y) \mid 0 \le x + y \le 8, \ 0 \le x - y \le 4\}.$$

(10%) 10. Determine the maximum of the function

$$f(x, y, z) = 3x^2 + 2y^2 + z^2$$

defined on the surface

$$\{(x, y, z) \mid 2x^2 + 27y^2 + 10z^2 = 12\}.$$