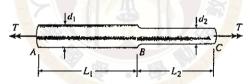
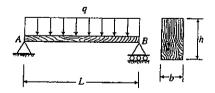

國立臺灣大學98學年度碩士班招生考試試題

題號:228 科目:材料力學(D)

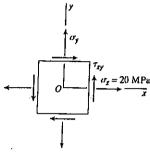

題號:228

ン 頁之第


1. A hollow, circular, steel column (E = 210 GPa) is subjected to a compressive load P. The column has length L = 2.5 m and outside diameter d = 200 mm. The load P = 500 kN. If the allowable compressive stress is 55 MPa and the allowable shortening of the column is 0.60 mm, what is the required wall thickness t_{min} ? (15%)

2. A solid circular bar ABC (G = 80 GPa) consists of two segments. One segment has diameter $d_1 = 50$ mm and length $L_1 = 1.25$ m; the other segment has diameter $d_2 =$ 40 mm and length $L_2 = 1$ m. What is the allowable torque T_{allow} if the shear stress is not to exceed 30 MPa and the angle of twist between the ends of the bar is not to exceed 1.5°? (15%)

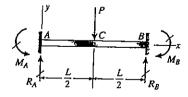
3. A simply supported wood beam AB with span length L = 3.75 m carries a uniform load of intensity q = 6.4 kN/m. Calculate the maximum bending stress σ_{max} due to the load q if the beam has a rectangular cross section with width b = 150 mm and height h = 300mm. (15%)



國立臺灣大學98學年度碩士班招生考試試題


題號:228 科目:材料力學(D)

題號: 228 ン 頁之第 ン頁


4. A plate in plane stress is subjected to normal stresses σ_x and σ_y and shear stress τ_{xy} . At counterclockwise angles $\theta = 40^{\circ}$ and $\theta = 80^{\circ}$ from the x axis the normal stress is 50 MPa tension. If the stress σ_x equals 20 MPa tension, what are the stresses σ_y and τ_{xy} ? (15%)

5. A cylindrical pressure vessel with flat ends is subjected to a torque T and a bending moment M. The outer radius is 300 mm and the wall thickness is 25 mm. The loads are as follows: $T = 90 \text{ kN} \cdot \text{m}$, $M = 100 \text{ kN} \cdot \text{m}$, and the internal pressure p = 6.25 MPa. Determine the maximum tensile stress σ_0 maximum compressive stress σ_c , and maximum shear stress τ_{max} in the wall of the cylinder. (20%)

6. The fixed-end beam ACB supports a concentrated load P at the midpoint. Analyze this beam by solving the fourth-order differential equation of the deflection curve (the load equation). Determine the reactions, shear forces, bending moments, slopes, and deflections of the beam. (20%)

