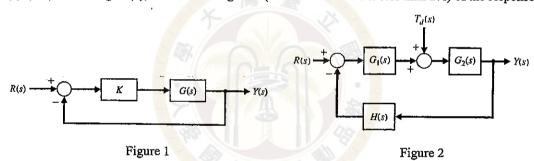
國立臺灣大學98學年度碩士班招生考試試題

科目:控制系統(A)


題號:219

題號:219

共 Q 頁之第 |

*Note: 請清楚標示答案

- 1. (25%) Considering the following state-space model $G: \begin{cases} \dot{x} = \begin{bmatrix} -1 & -1 \\ 3 & 2 \end{bmatrix} x + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u \\ y = \begin{bmatrix} 1 & 1 \end{bmatrix} x \end{cases}$
 - (a) (5%) Find the corresponding transfer function G(s).
 - (b) (5%) Refer to the feedback structure of Figure 1 and suppose the controller K is constant, find the range of K such that the closed-loop system is stable.
 - (c) (5%) Find the suitable value of K such that the damping-ratio of the closed-loop system is $\sqrt{3}/2 = 0.866$.
 - (d) (5%) Derive the output response y(t) to a unit step input $r(t) = \begin{cases} 1, & \text{for } t \ge 0 \\ 0, & \text{for } t < 0 \end{cases}$ with the K from (3).
 - (e) (5%) According to (4), find the settling time (defined as variations less than 2%) of the response.

- 2. (25%) Considering the feedback system of Figure 2 with $G_2(s) = \frac{1}{s^2 + 2s + 5}$ and H(s) = 1, a first-order controller is required in order to arbitrarily assign the closed-loop pole.
 - (a) (5%) Find a first-order controller $G_1(s) = K_1(s) = \frac{b_1 s + b_0}{s + a_0}$, such that the characteristic equation of the closed-loop system is $\Delta(s) = (s+2)(s^2+4s+5)$.
 - (b) (5%) Find the sensitivity of the closed-loop transfer function $T_{R\to Y}$ to the variations of a_0 , using the parameters obtained from (1).
 - (c) (5%) Find the steady-state error of the system due to a unit step input R(s), using the first-order controller $K_1(s)$ from (1).
 - (d) (5%) In order to eliminate the steady-state errors, an integral is normally applied to the controller, i.e. $G_1(s) = K_2(s) = \frac{b_2 s^2 + b_1 s + b_0}{s^2 + a_1 s}$. Find the second-order controller $K_2(s)$ such that the characteristic equation of the closed-loop system is $\Delta(s) = (s+2)^2(s^2+4s+5)$.
 - (e) (5%) Using the controller $K_2(s)$ from (4), find the transfer functions $T_{T_d \to Y}$, and the steady-state error of the output due to a unit step disturbance T_d .

國立臺灣大學98學年度碩士班招生考試試題

題號:219 國立臺灣大學9 科目:控制系統(A)

題號:219 夫 ② 頁之第 ② 頁

3. (30%) A feedback control system shown in Figure 3 is to be designed to satisfy the following specifications: (1) steady state error for a ramp input ≤35% of input slope; (2) percentage overshoot for a step input ≤4.4%; (3) settling time to within 2% for a step input ≤3 sec; (4) peak time for a step input ≤ 2 sec.

- (a) (5%) If $G_c = K_l$ and $H_1 = 0$, explain why all specifications can not be met simultaneously.
- (b) (8%) If $H_1 = 0$, can the system with phase-lead or phase-lag controller G_c satisfies all the specifications? Explain your reasons.
- (c) (10%) If $G_c = K_I$ and $H_1 = K_2$ s, find appropriate parameters K_I and K_2 of the system so all the specifications are met (using root locus technique).
- (d) (7%) Following (c), sketch Bode diagram of the closed-loop system.

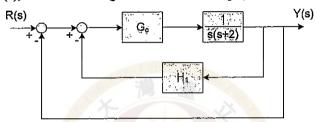


Figure 3

4. (10%) Sketch Nyquist diagram of the system whose bode diagram is shown in Figure 4.

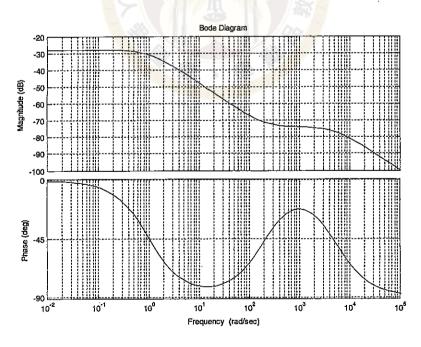


Figure 4

5. (10%) Analytically derive bandwidth ω_B of the closed-loop system with forward transfer function

$$G = \frac{\omega_n^2}{s(s + 2\zeta\omega_n)}$$
 and negative unity feedback.

試題隨卷繳回