國立臺灣大學112學年度轉學生招生考試試題

科目:線性代數

題號:48

題號: 48

共 1 頁之第 1 頁

※ 注意:請於試卷上「非選擇題作答區」標明大題及小題題號,並依序作答。

本試卷禁止使用計算器.

Notation: Let \mathbf{R} and \mathbf{C} denote the set of real and complex numbers respectively. For $F = \mathbf{R}$ or \mathbf{C} and any positive integer n, I_n is the identity matrix and 0_n is the zero matrix in $M_n(F)$. Let F^n denote the column vector space of dimension n over F. If $A \in M_{m \times n}(F)$, $A^t \in M_{n \times m}(F)$ denote the transpose of A. For $x = (x_1, \ldots, x_n)^t \in \mathbf{C}^n$, recall that the norm ||x|| of x is defined by

$$||x|| := \sqrt{|x_1|^2 + |x_2|^2 + \dots + |x_n|^2}.$$

Problem 1 (20pts). Let $T: \mathbb{R}^5 \to \mathbb{R}^4$ be the linear transformation defined by $T(v) = A \cdot v$ with the matrix

$$A = \begin{pmatrix} 2 & 3 & 1 & 4 & -9 \\ 1 & 1 & 1 & 1 & -3 \\ 1 & 1 & 1 & 2 & -5 \\ 2 & 2 & 2 & 3 & -8 \end{pmatrix}.$$

- (1) (5pts) Find the dimension of the image of T.
- (2) (10pts) Find bases of the kernel of T and the image of T.
- (3) (5pts) Find some $x \in \mathbb{R}^5$ such that $T(x) = (17, 6, 8, 14)^t$.

Problem 2 (10pts). Let W be the subspace of \mathbb{R}^4 defined by

$$W = \{(x_1, x_2, x_3, x_4)^{\mathsf{t}} \in \mathbf{R}^4 \mid x_1 + x_2 + x_3 - x_4 = 0, \ x_1 - 3x_2 + 2x_3 = 0\}.$$

Let $v = (2, 1, 0, 1)^t$. Find the minimal distance from v to W, namely $\min_{w \in W} ||v - w||$.

Problem 3 (25 pts). Let

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbf{R})$$

be a symmetric matrix.

- (1) (5pts) Find the eigenvalues of A.
- (2) (20pts) Find a matrix P such that $PP^{t} = I_{n}$ and $P^{-1}AP$ is a diagonal matrix.

Problem 4 (15pts). Let $A, B \in M_n(\mathbf{C})$ such that rank $A = \operatorname{rank} B$ and $A^2B = A$. Prove that $B^2A = B$.

Problem 5 (15pts). Determine all of the matrices $X \in M_2(\mathbf{R})$ that satisfy the equation

$$X^3 - 3X^2 = \begin{pmatrix} 1 & -3 \\ 1 & -3 \end{pmatrix}.$$

Problem 6 (15pts). Let $A \in M_n(\mathbb{C})$ with det A = 1 and $||Ax|| \le ||x||$ for any $x \in \mathbb{C}^n$. Prove that $AA^* = I_n$.

試題隨卷繳回