268 題號:

節次:

國立臺灣大學 113 學年度碩士班招生考試試題

科目: 線性代數(C)

題號:268

共 1 頁之第 1 頁

1. Find the dimension and the bases of the following homogeneous system. (10%)

$$x + 2y + 3z + t = 0$$
$$2x + 4y + 7z + 4t = 0$$
$$3x + 6y + 10z + 5t = 0$$

- 2. Find a basis for the subspace W of \mathbb{R}^4 that is orthogonal to u=(1,-2,3,4) and v=(3,-5,7,8). (10%)
- 3. Let \mathbb{R}^3 have the Euclidean inner product. Use the Gram-Schmidt process to transform the basis (u_1,u_2,u_3) into an orthonormal basis, where $u_1=(1,1,1),\ u_2=(-1,1,0),\ u_3=(1,2,1).$ (10%)
- 4. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined by $T(a_1, a_2) = (a_1 + 3a_2, 0.2a_1 4a_2)$. Let β and γ be the standard ordered bases for R^2 and R^3 , respectively. Now $\beta = \{(1,0),(0,1)\}$ and $\gamma = \{(e_1,e_2,e_3)\}$. Find the matrix representation of T in the ordered bases β and γ $[T]_{\beta}^{\gamma}$. (10%)
- 5. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined by $T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_2 \\ -5x_1 + 13x_2 \\ -7x_1 + 16x_2 \end{bmatrix}$. Find the matrix for the

transformation T with respect to the bases $B = (u_1, u_2)$ for R^2 and $B' = (v_1, v_2, v_3)$ for R^3 , where

$$u_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \ u_2 = \begin{bmatrix} 5 \\ 2 \end{bmatrix}, \ v_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \ v_2 = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix}, \ v_3 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}. (15\%)$$

- 6. Let $T: P_2 \to P_2$ be defined by $T(a_0 + a_1x + a_2x^2) = (5a_0 + 6a_1 + 2a_2) (a_1 + 8a_2)x + (a_0 2a_2)x^2$.
 - (a) Find the matrix T with respect to the standard basis for P_2 . (5%)
 - (b) Find the eigenvalues of T. (5%)
 - (c) Find bases for the eigenspaces of T. (5%)
- 7. Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ T(w,z) = (z,w). Find all the eigenvalues and eigenvectors of T. (15%)
- 8. In R^4 , let U = span((1,1,0,0), (1,1,1,2)). Find $u \in U$ such that ||u (1,2,3,4)|| is as small as possible. (15%)