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Problem 1. (25%)
The classical fluidic mechanics example about an incompressible Newtonian fluid flowing through a gap
(height = 2/) between two horizontal, infinite fixed parallel plates is illustrated in Figure 1.
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By solving the following set of the Navier-Stokes equations with proper initial and boundary conditions, the
fluid velocity profiles along x, y, and z directions (u, v, and w) can be derived, respectively.
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(a) Show the fully developed laminar flow velocity profile « (y) as below. (5%)
1 copy ., ”
“=o (a) (y*— h?)
(b) Assume that the gap height is adjustable. As far as the viscosity measurement is concerned, show that the
viscosity of the fluid measured £ would be proportional to #* while the volume flow rate ¢ and pressure

drop Ap/L are kept constant. (5%)

(¢} Show how the shear stress at the plate surface 7, is dependent on the fluid viscosity u. (5%)

((d) It is known that the Fanning friction factor fis defined as the following equation, where ¥ is the average
velocity of the fluid. Try your best to correlate fto Re for the fluid under a laminar flow condition. (5%)
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f=7m

(e) Explain the general physical significance of ffor the fluid friction in the flow channel from the aspect of the
Bernoulli equation. (5%)
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Problem 2. (25%) .

Consider transient 1-D heat conduction in a semi-infinite metallic solid depending under different surface
conditions, as illustrated in Figure 2: (i) kept at a constant surface temperature 7, (ii) kept at a constant heat
flux go0”, and (jii) exposed to a fluid with a temperature of T and a convective cocfficient A.

(i}

—x Figure 2

(2) Formulate the governing partial differential equation for solving T¢x, ¢) of the metallic solid. (4%)

(b) Write down the boundary conditions at surface x = 0 for all time for case (i), (ii), and (iii), respectively.
(6%)

(¢) Solve Tx.1) for the metallic solid in case (i) with a homogeneous initial temperature 7; (< T}). (9%)

(d) Comment in which case the Biot (Bf) number is important and explain why. (3%)

(e) Derive the overall heat transfer coefficient U for case (iii) when the fluid and metallic solid have finite
thickness of drand dn, respectively. (3%)

Problem 3. {25%)

Consider a chemical reactor containing a binary fluid mixture of solute species A and solvent species B
initially. The molar flux of A, Wa, is the result of two contributions: Ja, the molecuiar diffusion flux relative to
the bulk motion of the fluid produced by a concentration gradient, and Ba, the flux resulting from the bulk
motion of the fluid. (PS: The bold-faced symbols represent vectors.)

Wa=Ja+Ba
(a) Justify the following equation. (5%)
Wy = —DpgV0y + C4V = ~cDppVya + ya (W, + Wp)
(b) List THREE distinct experimental conditions that satisfy the following equation. (5%) |
Wa=Ja

(c) Derive the following equation by applying the mole balance to species A, which flows and reacts in an

element of volume. (5%)
oWy, OW,, OW,, ac,
- - e + Yg =—
17D oy o0z dt
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Problem 3. (Cont’d)

(d) Prove that the one-dimension, steady-state concentration profile of Cy in the reactor can be modeled by the
following ODE when both diffusion and convective transport are important. Start your proof from the
equation in (c). (5%)
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(e) Consider a homogeneous first order reaction A - P takes place in the reactor with the rate law of ra=-kCy.
Solve Cafz) under the circumstance of D4p << U, (the fluid velocity along z direction). (5%)

Problem 4. (25%)
The heat transfer correlation relating the Nusselt number (Vz) to the Reynolds (Re) and Prandtl (P¥) numbers
for flow around a sphere is

Nu = 2 + 0.6Re/2pr1/3

The equation can be applied to single spherical catalyst pellets (with a diameter, dp) in a packed bed reactor
(PBR) passing a plug flow of the reactant A at a uniform fluid velocity U and with a constant fluid density p.
The Nu, Re, and Pr for the spherical pellets are defined as follows.

hd Upd c
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(a) Explain (i) each term in Nu and Pr definitions and (ii) the physical meanings of Nu and Pr. (6%)

(b) Comment how the heat flux ¢ transferred from the bulk fluid to the pellet surface is varied from a Very low

Re number to a high Re number (while the boundary layer remains laminar). (4%)
(c) By analogy, the correlation for mass transfer to flow around a spherical pellet can be described as follows,

Sh =2+ 0.6Re/28c1/3
where
ked, v

0 = ———

Sh = =
Dyp D 4p

Explain the physical meanings of S% and Sc. (5%)

(d) Calculate the mass flux of reactant A, ¥y, to a single catalyst pellet 1 cm in diameter suspended in a large
body of liquid. The reactant is present in dilute concentrations, and the reaction is considered to take place
instantaneously at the external pellet surface (i.e., Cy4s = 0). The bulk concentration of the reactant is 1.0 M,
and the fluid velocity U is 0.1 m/s. The kinetic viscosity is 0.5 centistoke (1 ¢S = 10" m?%s), and the liquid
diffusivity of A is 107" m*s. =300 K. Hint: Wi = ke (Cas — Cas) (10%)
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