題號: 56 國立臺灣大學 111 學年度碩士班招生考試試題

科目:線性代數(A)

節次: 4

題號: 56

共 | 頁之第 | 頁

Notation: We denote by \mathbb{C} the set of complex numbers. For any positive integer n, we denote by \mathbb{C}^n the n-dimensional column vector spaces over \mathbb{C} ; let I_n be the identity matrix in $M_n(\mathbb{C})$.

Problem 1 (15 pts). Let $T: \mathbb{C}^4 \to \mathbb{C}^3$ be the linear transformation defined by $T(v) = A \cdot v$, where

$$A = \begin{pmatrix} 5 & -3 & 1 & 2 \\ -1 & 3 & 3 & -2 \\ 1 & 0 & 1 & 0 \end{pmatrix} \in M_{3\times 4}(C).$$

- (1) (5 pts) Find the rank and the nullity of T.
- (2) (10pts) Find a base of Ker T (the kernel of T).

Problem 2 (15pts). For any complex number $a \in \mathbb{C}$, let V_a be the subspace spanned by the row vectors

$$(2,-5,a), (1,a,-4), (a,-1,-2).$$

Determine all possible values $a \in \mathbb{C}$ such that $\dim_{\mathbb{C}} V_a = 2$.

Problem 3 (25pts). Let

$$A = \begin{pmatrix} 0 & 1 & -1 \\ 2 & -1 & 2 \\ 2 & -2 & 5 \end{pmatrix}.$$

- (1) (15pts) Find an invertible matrix $P \in M_3(\mathbb{C})$ such that $P^{-1}AP$ is a diagonal matrix.
- (2) (10pts) Find an invertible matrix $Q \in M_3(\mathbb{C})$ such that

$$Q^{-1}AQ = \begin{pmatrix} 0 & 0 & -4 \\ 1 & 0 & 1 \\ 0 & 1 & 4 \end{pmatrix}.$$

Problem 4 (15pts). Let $A \in M_n(\mathbb{C})$ be a Hermitian matrix $\iff A = A^*$.

- (1) (5 pts) Show that $\operatorname{Ker} A \cap \operatorname{Im} A = \{0\}$.
- (2) (10pts) If $A^3 = 2A^2 + 2A$, show that A = 0.

Problem 5 (15pts). Let $A \in M_n(\mathbb{C})$ such that $A^n = 0$ but $A^{n-1} \neq 0$.

- (1) (7pts) Show that there exists $v \in \mathbb{C}^n$ such that $\{v, Av, A^2v, \dots, A^{n-1}v\}$ is a basis of \mathbb{C}^n .
- (2) (8pts) If $B \in M_n(\mathbb{C})$ such that AB = BA, prove that

$$B = a_0 + a_1 A + a_2 A^2 + \dots + a_{n-1} A^{n-1}$$

for some $a_0, \ldots, a_{n-1} \in \mathbb{C}$.

Problem 6 (15pts). Let $A, B \in M_n(\mathbb{C})$. Suppose that the eigenvalues of A, B are all non-negative real numbers and that $\text{null}(A) = \text{null}(A^2)$ and $\text{null}(B) = \text{null}(B^2)$. If $A^4 = B^4$, prove that A = B.

(Recall that null(A):=the nullity of A = the dimension of the kernel of A)